Manuale del sistema di comunicazione

h3+ Interruttori automatici scatolati fino a 250 A

Le informazioni tecniche contenute nella documentazione sono soggette a variazioni e aggiornamenti periodici che avverranno senza una preventiva notifica, posto che la missione di Hager Bocchiotti è quella di fornire un prodotto che sia sempre all'avanguardia, innovativo e sicuro, nell'interesse del cliente medesimo. Per tutti gli aggiornamenti delle informazioni tecniche contenute nella documentazione, si prega di consultare periodicamente il nostro sito web.

Indice

Simboli di sicurezza		4
Infoi	ormazioni sulla sicurezza	5
1	A proposito del presente manuale	6
	 Utilizzo del presente manuale Abbreviazioni 	6 7
2	Descrizione del sistema di comunicazione h3+	8
	2.1 Sganciatori elettronici h3+	ç
	2.1.1 Sganciatori LSnl	g
	2.1.2 Sganciatori LSI	10
	2.1.3 Sganciatori LSIG	11
	2.1.4 Sganciatori Energy	12
	2.1.5 Significato dei LED e delle notifiche di allarme	14
2	2.2 Sistema di comunicazione h3+ con interruttore automatico Energy	15
4	2.3 Strumento di configurazione n3+ HTP610H	16
	2.3.1 Campo di applicazione	16
	2.3.3 Accesso alle pagine web di configurazione dell'h3+	17
2	2.4 Pannello display HTD210H	18
	2.4.1 Presentazione	18
	2.4.2 Caratteristiche del pannello display HTD210H	18
	2.5 Modulo di comunicazione Modbus	19
	2.6 Ausiliario AX/AL Energy	20
3	Funzionamento dello sganciatore Energy	21
(3.1 Navigazione e impostazioni dello sganciatore Energy	21
	3.1.1 Menu Protezione	21
	3.1.2 Menu Misura	22
	3.1.3 Menu Configurazione	23
	3.1.4 Menu Informazioni	24
	3.1.5 Modalità Scorrimento	24
	3.1.6 Principi di navigazione	25
	3.1.7 Modalità Blocco/Sblocco	25
,	3.2 Funzione di protezione	27
	3.2.1 Protezione Lungo ritardo	27
	3.2.2 FIDIEZIDIE DIEVE IIIdiuu 3.2.3 Protezione Istantanea	25
	3.2.0 Protezione di Terra	21
	3.2.5 Protezione del neutro	20
	3.2.6 Funzione Selettività per Zona (ZSI)	33

84

Indice

3.3	Funzi	one di misura	35
	3.3.1	Panoramica delle misure	35
	3.3.2	Misure in tempo reale	37
	3.3.3	Misure min/max	38
	3.3.4	Misura degli squilibri	40
	3.3.5	Misura della potenza	41
	3.3.6	Misure dell'energia	43
	3.3.7	Misura dei valori mediati su un intervallo	43
	3.3.8	Misura della distorsione armonica totale (THD)	46
	3.3.9	Misura dei fattori di potenza	47
	3.3.10	49	
	3.3.11 Accuratezza delle misure		53
3.4	Gesti	54	
	3.4.1	Principio degli allarmi dello sganciatore Energy	54
	3.4.2	Preallarme di sovraccarico PTA	55
	3.4.3	Allarmi di sgancio	56
	3.4.4	Allarmi personalizzabili	57
	3.4.5	Allarmi di sistema	60
	3.4.6	Configurazione degli allarmi	61
	3.4.7	Storico degli allarmi	64
Avvi	o, mes	sa in servizio, utilizzo	66
4.1	Conn	ettori e accessori	66
	4.1.1	Connettori	66
	412	Accessori di collegamento	67

	4.1.2 Accessori di collegamento	67
4.2	Avvio e configurazione dell'interruttore automatico	68
	4.2.1 Precauzioni per l'uso prima di iniziare	68
	4.2.2 Primo avvio dello sganciatore Energy	70
	4.2.3 Impostazione del setpoint Ir max e della corrente Ir dello sganciatore Energy	71
	4.2.4 Configurazione tramite il pulsante di sblocco	74
	4.2.5 Configurazione della Modalità Scorrimento	77
4.3	Connessione del modulo di comunicazione	78
	4.3.1 Connessione del modulo di comunicazione all'interruttore automatico	78
	4.3.2 Connessione dell'alimentazione del modulo di comunicazione	80
	4.3.3 Connessione degli ingressi/delle uscite	80
4.4	Montaggio e collegamento dell'ausiliario Energy AX/AL	81
4.5	Collegamento dei contatti di uscita PTA e OAC	83
	4.5.1 Collegamento del contatto PTA	83

4

Indice

5

4.6	Avvio e configurazione tramite il pannello display HTD210H	85
	4.6.1 Panoramica del display HTD210H	85
	4.6.2 Collegamento del pannello display HTD210H	87
	4.6.3 Alimentazione del pannello display HTD210H	88
	4.6.4 Primo avvio del pannello display HTD210H	89
	4.6.5 Raccomandazioni di configurazione tramite HTD210H	92
	4.6.6 Attivazione degli allarmi di HTD210H	94
4.7	Messa in servizio tramite lo strumento di configurazione HTP610H	96
	4.7.1 Preparazione dello strumento HTP610H	97
	4.7.2 Raccomandazioni di configurazione tramite HTP610H	100
	4.7.3 Test della curva di intervento tramite HTP610H	102
	4.7.4 Test di contatto PTA e OAC tramite HTP610H	103
4.8	Esercizio	104
	4.8.1 Visualizzazione di informazioni sul display incorporato e sporgente	104
	4.8.2 Visualizzazione di dati sullo strumento di configurazione HTP610H	106
	4.8.3 Visualizzazione dei dati di esercizio su agardio.manager	107
BUS	di comunicazione Modbus RTU	108
с - I		100
5. I	Funzionalita Modous dell'Interruttore automatico Energy	108

5.1	Funzionalita Modbus dell'Interruttore automatico Energy	108
5.2	Protezione da scrittura e gestione delle password Modbus	109
5.3	Connessione del modulo di comunicazione alla rete Modbus	110
5.4	Configurazione del modulo di comunicazione	112
5.5	Comunicazione con agardio.manager	113

6 Consigli per risoluzione dei problemi

Risoluzione dei problemi	114
	Risoluzione dei problemi

114

Simboli di sicurezza

La presente documentazione contiene istruzioni di sicurezza che dovete osservare per la vostra sicurezza personale o per la prevenzione di danni alle cose.

Le istruzioni di sicurezza che si riferiscono al vostro personale sono segnalate nella documentazione con un simbolo di avviso di sicurezza. Le istruzioni di sicurezza relative ai danni alle cose sono notificate dalla menzione **AVVISO.**

I simboli di avviso di sicurezza e le menzioni riportate di seguito sono classificati in base al grado di pericolo.

Indica una situazione pericolosa imminente che, se non evitata, si traduce in decesso o lesione grave.

AVVERTENZA

Indica una situazione potenzialmente pericolosa che, se non evitata, potrebbe tradursi in decesso o lesione grave.

ATTENZIONE

Indica una situazione potenzialmente pericolosa che, se non evitata, potrebbe tradursi in una lesione lieve o moderata.

Avvertenza di danni alle cose

Il presente manuale d'uso contiene istruzioni da osservare per evitare danni materiali:

AVVISO

AVVISO indica un messaggio di danni alle cose.

AVVISO indica anche importanti note per l'utente e informazioni particolarmente utili sul prodotto cui si deve prestare particolare attenzione per far sì che le successive attività vengano svolte in modo efficace e sicuro.

Informazioni sulla sicurezza

Personale qualificato

Il prodotto o il sistema descritto nella presente documentazione deve essere installato, fatto funzionare e sottoposto a manutenzione solo da personale qualificato.

Hager Electro (per contatto vedi pag. 6) non si assume alcuna responsabilità per le conseguenze derivanti dall'uso del presente materiale.

Per personale qualificato si intendono coloro che hanno competenze e conoscenze relative alla costruzione e al funzionamento delle apparecchiature elettriche e alla loro installazione, e che hanno ricevuto una formazione sulla sicurezza finalizzata al riconoscimento e alla prevenzione dei pericoli che ne derivano.

Uso corretto dei prodotti Hager Bocchiotti

I prodotti Hager Bocchiotti devono essere utilizzati solo per le applicazioni descritte nel catalogo e nella relativa documentazione tecnica. Se si utilizzano prodotti e componenti di altri produttori, questi devono essere raccomandati o approvati da Hager Bocchiotti. Il trasporto, lo stoccaggio, l'installazione, il montaggio, la messa in funzione, l'esercizio e la manutenzione devono assicurare che i prodotti funzionino in modo sicuro e senza problemi. Devono essere rispettate le condizioni ambientali ammissibili. Le informazioni contenute nella relativa documentazione devono essere rispettate.

Esonero dalla responsabilità

Il contenuto della presente documentazione è stato esaminato al fine di garantire la correttezza delle informazioni al momento della pubblicazione.

Non essendo possibile escludere totalmente possibili scostamenti, Hager Bocchiotti non può garantire la piena coerenza.

Tuttavia, le informazioni contenute nella presente pubblicazione vengono esaminate regolarmente e le eventuali correzioni necessarie vengono incluse nelle edizioni successive.

1 A proposito del presente manuale

1.1 Utilizzo del presente manuale

Contenuto del documento

Il presente manuale ha lo scopo di fornire agli utenti, agli elettricisti, ai quadristi e al personale addetto alla manutenzione le informazioni tecniche necessarie per la messa in funzione degli interruttori automatici scatolati h3+ con sganciatori elettronici e dei rispettivi accessori comunicanti.

Campo di applicazione

Il presente documento è applicabile agli interruttori automatici scatolati h3+ LSnl, LSI, LSIG e Energy con sganciatori elettronici.

Nota sull'applicabilità

Il presente manuale è destinato a:

- elettricisti e quadristi
- personale addetto alla manutenzione

Revisioni

Versione	Data
V.01-2022/HBO/Br.32/P/pdf	Settembre 2022

Documenti correlati

Titolo del documento	Codice
Manuale del sistema di comunicazione Modbus h3+	6LE005605A
Manuale d'uso - h3+ pannello display HTD210H	V.01-2022/HBO/Br.5/P/pdf
Manuale d'uso - h3+ strumento di configurazione HTP610H	V.01-2022/HBO/Br.4/P/pdf
Manuale d'uso - agardio.manager	6LE001607A

Contatto

Indirizzo	Hager Bocchiotti S.p.A. Via dei Valtorta, 45 20127 Milano
	Italia
Telefono	+ 39 02 70150511
Sito web	www.hager-bocchiotti.com

1.2 Abbreviazioni

ACP	Connettore per l'ausiliario AX/AL Energy
AL	Allarme (contatto ausiliario segnale di guasto)
AX	Ausiliario (contatto ausiliario aperto/chiuso)
CIP	Connettore per pannello display e modulo di comunicazione
MIP	Connettore per lo strumento di configurazione HTP610H
OAC	Connettore per il contatto d'uscita d'allarme opzionale
PTA	Allarme di pre-sgancio (pre-allarme di sovraccarico)
LCD	Display a cristalli liquidi
SSID	Service Set Identifier (nome della rete Wi-Fi senza fili)
SELV	Sicurezza extra basso voltaggio
URL	Uniform Resource Locator (indirizzo del sito web)
ZSI	Interblocco selettivo di zona (selettività per zona)

2 Descrizione del sistema di comunicazione h3+

Oltre alla protezione contro i sovraccarichi e i cortocircuiti, gli interruttori automatici scatolati h3+ dotati di sganciatori elettronici offrono una grande flessibilità e capacità di microregolazione della protezione, valori di selettività migliorati e una vasta gamma di misure elettriche nonché funzioni di comunicazione.

Panoramica degli sganciatori elettronici

Sono disponibili quattro versioni:

- LSnl
- LSI
- LSIG
- Energy

Gli interruttori automatici scatolati h3+ con sganciatori elettronici sono dotati di connettori PTA e MIP per facilitare l'uso avanzato del prodotto.

	LSnI	LSI	LSIG	Energy
PTA: Connettore di pre-allarme di sovraccarico	-	x	x	x
MIP: Connettore per HTP610H	x	x	x	x

Connettore PTA

Il connettore PTA, situato sul lato dell'interruttore, permette di collegare un circuito di segnale ausiliario al contatto di uscita del preallarme di sovraccarico. La soglia di questo preallarme è settata al 90% dell'impostazione di Ir sulle versioni LSI o LSIG e può essere regolata sulla versione Energy.

Connettore PTA

Connettore MIP

Il connettore MIP sul lato frontale è utilizzato per collegare lo strumento di configurazione h3+ HTP610H per testare l'intervento dell'interruttore automatico, configurare i parametri dello sganciatore ed eseguire la diagnostica dell'interruttore.

Connettore MIP

2.1 Sganciatori elettronici h3+

2.1.1 Sganciatori LSnl

- Configurazione tramite i selettori di regolazione
- Segnalazione dello stato dello sganciatore tramite LED (Ready)
- Segnalazione dell'allarme di sovraccarico tramite LED (>Ir)
- Possibile regolazione della soglia di lungo ritardo Ir e la corrente di breve ritardo Isd. I parametri tr e tsd e i parametri d'intervento istantaneo sono fissi
- Possibile regolazione della protezione del polo neutro sulle versioni a 4 poli (neutro posizionato a sinistra)

	40 A	100 A	160 A	250 A
P160	х	х	х	-
P250	х	х	х	х

L - Protezione Lungo ritardo

Ir (intervento tra 1,05 e 1,20 x Ir)

Ir1 (A)	In = 40 A	16 - 18 - 20 - 22 - 25 - 28 - 32 - 34 - 37 - 40
Ir1 (A)	In = 100 A	40 - 45 - 50 - 57 - 63 - 72 - 80 - 87 - 93 - 100
Ir1 (A)	In = 160 A	63 - 70 - 80 - 90 - 100 - 110 - 125 - 135 - 150 - 160
Ir1 (A)	In = 250 A	90 - 100 - 110 - 125 - 140 - 160 - 180 - 200 - 225 - 250
microregolazione Ir2		0,91 - 0,92 - 0,93 - 0,94 - 0,95 - 0,96 - 0,97 - 0,98 - 0,99 - 1

tr (approssimazione -21%/+1%)

tr (s) a 6 x lr 5 (fisso)

S - Protezione Breve ritardo

Isd (approssimazione -10/+10%)				
regolazione lsd = lr x	OFF - 1,5 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 10			
tsd (ms) a 10 x lr	100 (fisso)			
tempo di non intervento (ms)	80			
tempo massimo di chiusura (ms)	150			

I - Protezione Istantanea

li (precisione +15/-15%)	15 x In (fisso)	11 x In (fisso)
temporizzazione (ms)	fissa	
tempo di non intervento (ms)	10	
tempo massimo di chiusura (ms)	50	

Regolazione del Neutro (solo 4P)

protezione del neutro (Ir, Isd) x	OFF - 50% - 100%
protezione del neutro li	Come per le fasi
temporizzazione	Come per tr, tsd e istantanea

2.1 Sganciatori elettronici h3+

2.1.2 Sganciatori LSI

- Configurazione tramite i selettori di regolazione
- Segnalazione dello stato dello sganciatore tramite LED (Ready)
- Segnalazione del preallarme di sovraccarico del PTA tramite LED (soglia 90% Ir)
- Segnalazione dell'allarme di sovraccarico tramite LED (>Ir)
- Segnalazione dell'allarme di temperatura dello sganciatore tramite LED
- Possibile regolazione delle temporizzazioni e delle soglie Il tempo di intervento istantaneo è fisso
- Possibile regolazione della protezione del polo neutro sulle versioni a 4 poli (neutro posizionato a sinistra)

	40 A	100 A	160 A	250 A
P160	x	x	х	-
P250	x	x	x	х

L - Protezione Lungo ritardo

. . .

Ir (Intervento tra 1,05 e 1,20 x Ir)				
lr1 (A)	In = 40 A	16 - 18 - 20 - 22 - 25 - 28 - 32 - 34 - 37 - 40		
lr1 (A)	In = 100 A	40 - 45 - 50 - 57 - 63 - 72 - 80 - 87 - 93 - 100		
Ir1 (A)	In = 160 A	63 - 70 - 80 - 90 - 100 - 110 - 125 - 135 - 150 - 160		
Ir1 (A)	In = 250 A	90 - 100 - 110 - 125 - 140 - 160 - 180 - 200 - 225 - 250		
microregolazione Ir2		0,91 - 0,92 - 0,93 - 0,94 - 0,95 - 0,96 - 0,97 - 0,98 - 0,99 - 1		

tr (approssimazione -21%/+1%)

tr

S - Protezione Breve ritardo

Isd (approssimazione -10/+10%)

regolazione lsd = lr x	OFF - 1,5	5 - 2 - 3 -	4 - 5 - 6 -	7 - 8 - 10)
tsd (ms) a 10 x lr e l ² t OFF	50	100	200	300	400
tsd (ms) a 10 x lr e l ² t ON	50	100	200	300	400
tempo di non intervento (ms)	20	80	180	280	380
tempo massimo di chiusura (ms)	80	150	250	350	450

I - Protezione Istantanea

li (approssimazione +15/-15%)

In = 40 A; 100 A: li (x In)	3 - 4 - 5 - 6 - 7 - 8 - 10 - 12 - 15
In = 160 A; 250 A: li (x ln)	3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11
temporizzazione (ms)	fissa
tempo di non intervento (ms)	10
tempo massimo di chiusura (ms)	50

Regolazione del Neutro (solo 4P)

protezione del neutro (Ir, Isd) x	OFF - 50% - 100%
protezione istantanea del neutro li	Come per le fasi
temporizzazione	Come per tr, tsd e istantanea

2.1.3 Sganciatori LSIG

- Configurazione tramite i selettori di regolazione
- Segnalazione dello stato dello sganciatore tramite LED (Ready)
- Segnalazione del preallarme di sovraccarico del PTA tramite LED (soglia 90% Ir)
- Segnalazione dell'allarme di sovraccarico tramite LED (>Ir)
- Segnalazione dell'allarme di temperatura dello sganciatore tramite LED
- Possibile regolazione delle temporizzazioni e delle soglie
- Il tempo di intervento istantaneo è fisso. Protezione di terra: Ig e tg fissi
 Possibile regolazione della protezione del polo neutro sulle versioni a 4 poli (neutro posizionato a sinistra)

	40 A	100 A	160 A	250 A
P250	x	x	х	x

L - Protezione Lungo ritardo

tr (approssimazione -21%/+1%)

tr (s) a 6 x Ir	0,5 - 1,5 - 2,5 -	5 - 7,5 - 9 - 10 -	12 - 14 - 16

S - Protezione Breve ritardo

Isd (approssimazione -10/+10%)
-------------------------------	---

regolazione Isd = Ir x	OFF -	1,5 - 2 - 3	- 4 - 5 - 0	6 - 7 - 8 -	10	
tsd (ms) a 10 x Ir e I²t OFF	50	100	200	300	400	
tsd (ms) a 10 x lr e l²t ON	50	100	200	300	400	
tempo di non intervento (ms)	20	80	180	280	380	
tempo massimo di chiusura (ms)	80	150	250	350	450	

2.1 Sganciatori elettronici h3+

2.1.3 Sganciatori LSIG

I - Protezione istantanea

li (approssimazione +15/-15%)

In = 40 A; 100 A: li (x ln)	3 - 4 - 5 - 6 - 7 - 8 - 10 - 12 - 15
ln = 160 A; 250 A: li (x ln)	3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11
temporizzazione (ms)	fissa
tempo di non intervento (ms)	10
tempo massimo di chiusura (ms)	50

G - Protezione di Terra

Ig (approssimazione +10/ -10%)

lg = ln x	OFF - 40% per In = 40 A; 20% per In > 40 A
temporizzazione (ms)	200 (fisso); l²t attivato in funzione di Isd l²t
tempo di non intervento (ms)	180
tempo massimo di chiusura (ms)	250

Regolazione del Neutro (solo 4P)

protezione del neutro (Ir, Isd) x	OFF - 50% - 100%
protezione istantanea del neutro li	Come per le fasi
temporizzazione	Come per tr, tsd e istantanea

2.1.4 Sganciatori Energy

Configurazione tramite selettore di regolazione, joystick e display incorporato

- Segnalazione dello stato dello sganciatore tramite LED (Ready)
- Segnalazione del preallarme di sovraccarico del PTA tramite LED (soglia regolabile)
- Segnalazione dell'allarme di sovraccarico tramite LED (>Ir)
- Possibile regolazione delle soglie e dei tempi di ritardo della protezione LSIG
- Possibile regolazione della protezione del polo neutro sulle versioni a 4 poli (neutro posizionato a sinistra)

Funzione di protezione

- L Protezione Lungo ritardo
- **S** Protezione Breve ritardo
- I Protezione Istantanea
- G Protezione di Terra

:hager ® восснютт

Impostazione di tutti i parametri di protezione. **Funzione di protezione** Vedere paragrafo 3.2 pag. 27

Funzione di misura

Vedere paragrafo 3.3 pag. 35

Gestione degli allarmi

Pre-allarmi Allarmi d'intervento Allarmi personalizzabili Allarmi di sistema Vedere paragrafo 3.4 pag. 54

Storico degli eventi

Interventi Allarmi Impostazioni Vedere paragrafo 3.4 pag. 54

Uscite integrate

Contatto di uscita PTA Contatto di uscita OAC Vedere paragrafo 3.4 pag. 54

Altre configurazioni

Fare riferimento al paragrafo 3.3.10 Configurazione delle misure, pag. 49

Lo sganciatore Energy può essere alimentato tramite un'alimentazione esterna per garantire l'esercizio continuo delle funzioni di misura, allarme e configurazione. Tuttavia, queste funzioni possono continuare anche senza alimentazione esterna, a partire dalle seguenti condizioni minime:

- interruttore automatico chiuso
- corrente minima attraverso l'interruttore; sotto è riportata una tabella per corrente nominale

Corr. nominale	1 polo alimentato	2 poli alimentati	3 poli alimentati
40 A	NA	>14 A	>10 A
100 A	>25 A	>15 A	>15 A
160 A	>32 A	>16 A	>16 A
250 A	>50 A	>25 A	>25 A

Si raccomanda di usare l'alimentatore HTG911H 24 VDC SELV (bassissima tensione di sicurezza) come alimentatore esterno.

Inoltre, si raccomanda di utilizzare un'alimentazione sicura a 24 V DC per garantire la completa continuità del servizio e il corretto esercizio anche in caso di guasto della rete di distribuzione.

2.1 Sganciatori elettronici h3+

2.1.5 Significato dei LED e delle notifiche di allarme

Gli indicatori LED sul frontale e i pop-up sul display incorporato indicano i cambiamenti dello stato di esercizio e dello stato di allarme degli interruttori automatici LSnI, LSI, LSIG e Energy.

	LSnI	LSI LSIG	Energy	y	
			Notifica	a	
Allarme di uscita OAC	-		(((▲ 0 A	())) (C	OAC attivato
Allarme di sgancio	-		Notifica	a LTD 299A PH.1	Indica il tipo di intervento e la sua causa: - LTD: Temporizzazione Lungo ritardo - STD: Temporizzazione Breve ritardo - INST: Istantaneo - GROUND: Protezione differenziale - TEST: Modalità di prova con MIP
Allarme temperatura sganciatore	-			a	LED rosso permanente o notifica su Energy: Temperatura interna dello sganciatore > 105 °C
Allarme di sovraccarico		> lr			 rosso lampeggiante l ≥ 105% lr rosso permanente l ≥ 112% lr
Preallarme di sovraccarico PTA	90 %	% lr	PT	Â	 LED 90% Ir o PTA arancione lampeggiante soglia del 90% Ir o soglia PTA raggiunta arancione permanente contatto PTA attivato
Stato sganciatore		Ready	-		 verde permanente lo sganciatore è operativo arancione lampeggiante guasto interno sganciatore

2.2 Sistema di comunicazione h3+ con interruttore automatico Energy

La gamma di interruttori automatici scatolati h3+ con sganciatori elettronici è disponibile con una variante: l'interruttore automatico Energy accompagnato dal proprio sistema di comunicazione.

Il sistema di comunicazione h3+ è composto dai seguenti accessori di comunicazione e dal loro collegamento all'interruttore automatico Energy:

- Strumento di configurazione HTP610H
- Pannello display HTD210H
- Modulo di comunicazione Modbus
- Ausiliario AX/AL Energy

Oltre al proprio sistema di comunicazione, l'interruttore automatico h3+ Energy soddisfa i più recenti standard di efficienza energetica grazie alla capacità di misurare i livelli di energia e di disporre di un'ampia gamma di variabili di misura come tensione, corrente, potenza, frequenza, ecc.

Il sistema di comunicazione h3+ viene utilizzato per configurare l'interruttore automatico Energy e per visualizzare i relativi dati di misura e di stato, sia a livello locale che a un livello di monitoraggio più esteso nell'edificio in cui è installato questo sistema.

A livello locale, i dati dell'interruttore automatico Energy sono configurati e visualizzati utilizzando un display incorporato o, a scelta, un pannello display.

A livello esteso, l'interruttore automatico Energy può essere collegato a un modulo opzionale per inviare i propri dati a un sistema di monitoraggio tramite un bus di comunicazione Modbus RTU.

È particolarmente adatto al server di dati agardio.manager di Hager Bocchiotti.

Sistema di comunicazione h3+

Si raccomanda di usare l'alimentatore HTG911H 24 V DC per rendere funzionale questo sistema.

2.3 Strumento di configurazione h3+ HTP610H

2.3.1 Campo di applicazione

Lo strumento di configurazione h3+ è particolarmente raccomandato per le operazioni di configurazione, test, messa in servizio e diagnostica degli interruttori automatici h3+ con sganciatori elettronici (LSnI, LSI, LSIG, Energy).

Strumento di configurazione h3+ HTP610H

- Permette agli utenti le seguenti operazioni:
- Visualizzare lo stato dell'interruttore automatico Energy e i suoi parametri di identificazione
- Sincronizzare la data e l'ora dell'interruttore automatico Energy
- Impostare tutti i parametri dell'interruttore automatico Energy
- Attivare/disattivare l'autorizzazione alla scrittura dei dati per evitare modifiche a distanza
- Visualizzare le misure delle variabili elettriche in tempo reale e le variabili calcolate.
- Eseguire il test degli sganciatori LSnI, LSI, LSIG ed Energy
- Testare l'attivazione dei contatti di uscita dell'interruttore automatico Energy
- Gestire gli allarmi predefiniti e quelli personalizzabili
- Visualizzare gli storici degli eventi (interventi, operazioni, allarmi, impostazioni)
- Gestire gli account utente
- Aggiornare il software di configurazione e rigenerare le password per gli accessori di comunicazione.

2.3.2 Test sganciatore Energy

Lo strumento di configurazione HTP610H permette di testare e verificare l'esercizio degli interruttori automatici LSnI, LSI, LSIG e Energy. La prova consiste nel verificare che la catena elettronica e meccanica dello sganciatore scatti correttamente quando si simulano correnti di sovraccarico e cortocircuiti.

Questo test può essere configurato come segue:

- singolo o totale sulle fasi, il neutro o la terra
- test automatico, semi-automatico o manuale
- inclusione (o meno) della soglia di preallarme di sovraccarico e della soglia di allarme di sovraccarico

Questa funzione di test viene utilizzata anche per visualizzare la curva di intervento.

2.3.3 Accesso alle pagine web di configurazione dell'h3+

Lo strumento di configurazione h3+ HTP610H è composto da un'unità di configurazione portatile, un cavo adattatore MIP, un cavo di collegamento e un adattatore per ricarica 110 - 230 VAC. L'unità è fornita in una valigetta per il trasporto.

L'unità è dotata di una batteria ricaricabile ed è collegata all'interruttore automatico Energy sul lato frontale tramite il connettore MIP.

Unità di configurazione h3+

- L'unità di configurazione portatile incorpora il server Web di configurazione h3+ che permette all'utente di connettersi ad esso senza dover installare o scaricare un'applicazione software. Le pagine di navigazione del server di configurazione h3+ sono accessibili dal browser web di uno smartphone, un tablet multimediale o un laptop.
- Ci sono due possibili tipi di connessione tra il dispositivo e il server:
- connessione Wi-Fi senza fili
- connessione tramite cavo Ethernet

2.4 Pannello display HTD210H

2.4.1 Presentazione

Il pannello display HTD210H è un accessorio opzionale che viene utilizzato per configurare lo sganciatore Energy e visualizzare i dati su un pannello o una porta nei pressi dell'interruttore automatico.

Pannello display HTD210H

Si monta facilmente su una porta o su un pannello di un quadro grazie alla profondità minima. Solo un cavo accessorio è necessario per assicurare il collegamento con l'interruttore automatico Energy (alimentatore 24 V DC incluso). Il fronte del dispositivo è protetto da una parete trasparente e sigillata atta ad assicurare una protezione IP65 una volta installato in un quadro di distribuzione appropriato. Lo schermo LCD è retroilluminato al fine di garantire una facile lettura anche in condizioni di scarsa luce ambiente.

2.4.2 Caratteristiche del pannello display HTD210H

Funzioni del pannello display HTD210H

- Il pannello display HTD210H riporta le seguenti informazioni:
- i parametri di protezione dell'interruttore automatico
- le variabili misurate dall'interruttore automatico
- i parametri di gestione degli allarmi
- gli storici degli eventi
- le caratteristiche di identificazione dell'interruttore automatico

Si usa per definire e modificare i seguenti dati:

- parametri di protezione dell'interruttore automatico
- parametri di misura
- parametri dei contatti di uscita
- gestione degli allarmi

Specifiche tecniche

Dimensioni	97 x 97 x 46 mm (27 mm dietro la porta)
Apertura porta	92 x 92 mm
Dimensioni schermo	37 x 78 mm
Display	retroilluminazione blu
LED di allarme	lampeggiante rosso
LED di comunicazione	lampeggiante giallo
LED di alimentazione	permanente verde
Consumo tipico	2 VA
Temperatura di esercizio	-10 °C+55 °C
Categoria d'uso	III
Indice di protezione	IP65 (retro IP20)
Tensione nominale di esercizio	24 V DC (+/- 30%)

2.5 Modulo di comunicazione Modbus

Il modulo di comunicazione per la serie HTC3x0H permette di condividere tutti i dati salvati dall'interruttore automatico h3+ Energy con un sistema di monitoraggio Modbus RTU compatibile.

Si consiglia in particolare di interfacciarlo con il server dati HTG411H agardio.manager

Connessione comunicazione Modbus

- I parametri Modbus possono essere regolati sul fronte utilizzando i selettori di regolazione:
- Indirizzo Modbus da 1 a 99
- Parità
- Velocità di trasmissione

Il modulo di comunicazione Modbus ha una resistenza terminale di 120 Ω . Questa resistenza può essere attivata/disattivata tramite un interruttore sul pannello frontale. Ci sono due versioni con o senza contatti di ingresso e di uscita.

- HTC310H: senza contatti di ingresso e uscita
- HTC320H: con 2 contatti di ingresso e 2 contatti di uscita

Specifiche tecniche

Larghezza	2 moduli
Contatti d'ingresso	tipo 24 V DC (15 – 30 V DC), 2 mA - 15 mA
Contatti di uscita	≤ 100 V DC (tipo 24, 48 V DC)
Consumo	40 mA / 24 V DC
Tensione di alimentazione modulo	24 V DC (+/- 30%)

2.6 Ausiliario AX/AL Energy

L'ausiliario AX/AL Energy è dedicato all'interruttore automatico h3+ Energy. Consente allo sganciatore Energy di conteggiare il numero di cicli di esercizio, il numero di interventi relativi a un guasto elettromeccanico e di specificare lo stato (aperto/chiuso/inserito) dei contatti dell'interruttore automatico. È collegato allo sganciatore Energy tramite il connettore ACP.

HXS120H ausiliario AX/AL Energy

Ci sono tre versioni disponibili come opzione:

- HXS120H: Contacicli AX/AL Energy
- HXS121H: Contatto ausiliario AX/AL Energy 230 V AC
- HXS122H: Contatto ausiliario AX/AL Energy 30 V DC

I riferimenti HXS121H e HXS122H contengono un contatto AX a potenziale zero e un contatto AL. Questi riferimenti sono forniti con i contatti precablati.

3 Funzionamento dello sganciatore Energy

3.1 Navigazione e impostazioni dello sganciatore Energy

Il fronte dello sganciatore Energy raggruppa i seguenti elementi:

(6) LED indicatori

Il display incorporato permette di accedere alle impostazioni dello sganciatore Energy e di visualizzare le misure e gli stati attraverso i seguenti 4 menu principali:

Protezione	Misura	Configurazione	Informazioni
	(1))	()	i

3.1.1 Menu Protezione

Il menu Protezione è composto da sotto-menu per visualizzare e modificare ogni impostazione di protezione dello sganciatore:

	Impostazione soglia	Impostazione tempo	Altra impostazione
Protezione Lungo ritardo	lr	tr	
Protezione Breve ritardo	lsd	tsd (1 ² t)	ZSI
Protezione Istantanea	li		
Protezione di Terra	lg	tg (l ² t)	ZSI
Protezione del Neutro	N		

3.1 Navigazione e impostazioni dello sganciatore Energy

3.1.2 Menu Misura

Tensioni sul pannello display

Il menu Misura è composto da videate che permettono di visualizzare alcune delle misure effettuate dallo sganciatore:

Variabile misurata	Simbolo	Unità	Risoluzione del display
Corrente istantanea per fase e neutro	I1, I2, I3, IN	A	1 A
Corrente istantanea massima per fase e neutro	I1 max I2 max I3 max IN max	A	1 A
Corrente efficace istantanea di guasto a terra	IG	A	1 A
Tensione efficace fase/neutro	V1N, V2N, V3N	V	1 V
Tensione efficace massima fase/neutro	V1N max V2N max V3N max	V	1 V
Tensione efficace fase/fase	U12, U23, U31	V	1 V
Tensione efficace massima fase/fase	U12 max U23 max U31 max	V	1 V
Potenza attiva per fase	P1, P2, P3	kW	1 kW
Potenza attiva massima per fase	P1 max P2 max P3 max	kW	1 kW
Potenza attiva totale	Ptot	kW	1 kW
Potenza reattiva per fase	Q1, Q2, Q3	kvar	1 kvar
Potenza reattiva massima per fase	Q1 max Q2 max Q3 max	kvar	1 kvar
Potenza reattiva totale	Qtot	kvar	1 kvar
Energia attiva e reattiva	Ea, Er	kWh, kvar	adattiva
Sequenza di fase	φSEQ	-	-
Cos phi totale (valore assoluto)	cos φ	-	0,01
Frequenza	-	Hz	0,1 Hz

3.1.3 Menu Configurazione

- Il menu di Configurazione è composto da sotto-menu utilizzati per
- visualizzare e modificare i seguenti parametri dello sganciatore:
- ora e data
- orientamento del display
- luminosità
- modalità standby
- ripristino dei valori massimi di misura
- ritorno alle impostazioni di fabbrica
- autorizzazione alla scrittura dei dati

Sottomenu Impostazione dell'ora

L'ora dello sganciatore può essere impostata utilizzando questo menu. L'ora può anche essere impostata utilizzando il pannello display HTD210H, lo strumento di configurazione h3+ o anche tramite un comando di sincronizzazione dell'ora dal master Modbus.

Sottomenu Impostazione della data

La data dello sganciatore può essere impostata utilizzando questo menu. La data può anche essere impostata utilizzando il pannello display HTD210H, lo strumento di configurazione h3+ o anche tramite un comando di sincronizzazione dell'ora dal master Modbus.

ジ Sottomenu Impostazione dell'orientamento del display

È possibile ruotare il display in 4 direzioni: in alto, in basso, a sinistra o a destra. Il display è ottimizzato per garantire la massima leggibilità indipendentemente dall'orientamento.

Orientamento a destra

Sottomenu Regolazione della luminosità

La luminosità può essere impostata al 20%, 40%, 60%, 80% o 100% (60% per impostazione predefinita).

Sottomenu Modalità standby

Quando la modalità standby è attivata, il display si spegne dopo 5 minuti se il joystick non viene mosso. La modalità standby è attivata per impostazione predefinita e può essere attivata.

Se il joystick viene spostato entro 15 minuti dalla messa in standby del display, verrà visualizzata l'ultima vista prima dello standby. Altrimenti, il display sarà impostato sulla vista Menu principale.

3.1 Navigazione e impostazioni dello sganciatore Energy

3.1.3 Menu Configurazione

- La modalità standby viene disattivata da
- uno dei seguenti eventi:
- azione su joystick
- messaggio di notifica d'allarme

MAX) Sottomenu Ripristino dei valori massimi di misura

Questo sotto-menu permette di resettare i valori massimi memorizzati di corrente, tensione e potenza. Questo comando di ripristino non solo cambia questi valori massimi, ma azzera anche i contatori di energia.

Sottomenu Ritorno alle configurazioni di fabbrica

Questo sotto-menu permette di resettare le impostazioni accessibili dal display incorporato nella propria configurazione iniziale al momento della consegna.

Sottomenu Autorizzazione alla scrittura dei dati

Questo sotto-menu permette di attivare/disattivare l'autorizzazione alla scrittura dei dati in relazione allo sganciatore Energy, al fine di evitare modifiche da remoto. Per impostazione predefinita, l'autorizzazione alla scrittura dei dati è attivata (impostata su ON).

3.1.4 Menu Informazioni

Il menu Informazioni permette di visualizzare le seguenti informazioni:

- informazioni sull'ultimo guasto elettromeccanico
 - AX: numero di cicli di apertura/chiusura
- AL: numero di interventi legati a un guasto elettromeccanico

Nota

Le informazioni sul numero di cicli di esercizio o sul numero di interventi possono essere utilizzate solo se l'accessorio ausiliario AX/AL Energy è stato installato nell'interruttore automatico Energy.

3.1.5 Modalità Scorrimento

La Modalità scorrimento permette di visualizzare continuamente le videate del menu Misure al ritmo di una visualizzazione ogni 3 secondi. Per visualizzarle in Modalità scorrimento, devono essere state precedentemente selezionate come preferite dal menu Misure disponibili.

La Modalità scorrimento si avvia automaticamente dopo 30 secondi di inattività del joystick e quando almeno una videata è selezionata come preferita.

Di default nessuna videata è selezionata come preferita e di conseguenza il display non passa alla Modalità scorrimento dopo 30 secondi di inattività.

Nota

Quando la Modalità scorrimento va in cortocircuito e non è stata selezionata nessuna videata preferita o è stata selezionata una sola preferita, il display si spegne dopo 5 minuti di inattività del joystick anche se la modalità standby è stata disattivata.

3.1.6 Principi di navigazione

Il joystick sulla sinistra dello schermo è utilizzato per navigare attraverso i menu e confermare un'azione.

3.1.7 Modalità Blocco/Sblocco

Per impostazione predefinita, le impostazioni di protezione dello sganciatore Energy non possono essere modificate bloccando la funzione di navigazione del display incorporato. La navigazione è ancora possibile per visualizzare i dati.

Il blocco impedisce qualsiasi modifica involontaria delle impostazioni dello sganciatore da parte di personale non autorizzato, che inciderebbe sul livello di protezione dello sganciatore, delle misure effettuate e delle sue capacità di comunicazione remota:

- reimpostazione delle statistiche di misura
- ritorno alle impostazioni di fabbrica del display incorporato
- modifica del parametro di blocco della scrittura dei dati

Se c'è un tentativo di modificare un parametro bloccato usando il joystick, un lucchetto viene visualizzato sullo schermo a indicare che la funzione di blocco è attiva.

Display incorporato bloccato

Per sbloccare l'accesso al fine di poter modificare le impostazioni, è necessario aprire il coperchietto trasparente e accedere al pulsante di sblocco o al selettore di regolazione lr max. Ci sono due modi per sbloccare l'accesso:

- utilizzando il selettore di regolazione Ir max
- premendo il pulsante di sblocco

3.1 Navigazione e impostazioni dello sganciatore Energy

3.1.7 Modalità Blocco/Sblocco

Lo sganciatore elettronico Energy assicura protezione contro le sovracorrenti e guasti di isolamento per tutti i tipi di distribuzione di energia elettrica. Le sue caratteristiche di protezione sono conformi ai requisiti della norma CEI EN 60947-2.

Elenco delle funzioni di protezione

- Protezione Lungo ritardo L: Protezione contro i sovraccarichi
- Protezione Breve ritardo S: Protezione contro i cortocircuiti di bassa intensità
- Protezione Istantanea I: Protezione contro i cortocircuiti di forte intensità
- Protezione di Terra **G:** Protezione contro i guasti a terra

	lr	Soglia protezione Lungo ritardo		
L tr		emporizzazione Lungo ritardo		
	lsd	Soglia protezione Breve ritardo		
s	tsd	Temporizzazione Breve ritardo		
I ² t ON/OFF	I ² t ON/OFF	Curva I ² t su protezione Breve ritardo attivata o meno		
I	li	Soglia protezione Istantanea		
	lg	Soglia protezione di Terra		
G	tg	Temporizzazione protezione di Terra		
I ² t ON/OFF		Curva I²t su protezione di Terra attivata o meno		

Parametri di impostazione della protezione

I parametri di impostazione della protezione possono essere modificati:

- dallo sganciatore Energy utilizzando il selettore di regolazione e lo schermo integrato
- dal pannello display HTD210H
- dallo strumento di configurazione h3+ HTP610H

Tutte le funzioni di protezione si basano sul valore efficace (RMS) della corrente in modo da non tener conto di eventuali armoniche di corrente.

L'ampia scelta di impostazioni della curva di protezione permette di coordinare la selettività.

3.2 Funzione di protezione

3.2.1 Protezione Lungo ritardo

La protezione Lungo ritardo è concepita per proteggere dai sovraccarichi di corrente su conduttori e utenze in tutte le applicazioni di distribuzione dell'energia elettrica. La protezione Lungo ritardo ha una funzione di protezione a tempo inverso che include una funzione di imaging termico.

Impostazioni di protezione Lungo ritardo

Protezione Lungo ritardo

Parametri Lungo ritardo

	lr	Soglia protezione Lungo ritardo
L	tr	Temporizzazione Lungo ritardo

Impostazione soglia Ir

L'intervallo di intervento della protezione Lungo ritardo è: 1,05...1,20 lr secondo la norma CEI EN 60947-2.

La tolleranza della soglia d'intervento Ir per la protezione Lungo ritardo è compresa fra +5% e +20%. La soglia Ir si imposta prima con il selettore di regolazione Ir max, poi, se necessario, dal display incorporato per facilitare le microregolazioni in incrementi di 1 A.

Val. nominale (In)	Intervallo max regolazione soglia Ir (A) Intervallo microregolazione soglia Ir (A)				
	lr max 16	lr max 25	lr max 32	lr max 40	-
40 A	16 - 16	16 - 25	16 - 32	16 - 40	-
100 A	Ir max 40	lr max 63	lr max 80	lr max 100	-
	40 - 40	40 - 63	40 - 80	40 - 100	-
160 4	lr max 63	lr max 80	Ir max 100	lr max 125	Ir max 160
100 A	63 - 63	63 - 80	63 - 100	63 - 125	63 - 160
250 A	Ir max 100	Ir max 125	Ir max 160	lr max 200	lr max 250
200 A	100 - 100	100 - 125	100 - 160	100 - 200	100 - 250

Regolazione della temporizzazione tr

La temporizzazione tr definisce il tempo di intervento della protezione Lungo ritardo per una corrente di 6 x lr.

La temporizzazione tr può essere regolata sul display incorporato, sul pannello display o con lo strumnto di configurazione h3+.

16

3.2 Funzione di protezione

3.2.1 Protezione Lungo ritardo

Intervallo di regolazione tr (s)

La tolleranza del tempo d'intervento della protezione Lungo ritardo è di -20% + 20ms e 0% + 30 ms.

Esempio:

Per tr = 5s e I = 6 x Ir, il tempo di intervento della protezione Lungo ritardo sarà compreso tra 3,98s e 5,03s.

Regolazione del riscaldamento dei conduttori tramite imaging termico

Gli sganciatori elettronici LSnI, LSI, LSIG e Energy hanno una funzione di imaging termico. Questa funzione regola il riscaldamento e il raffreddamento dei conduttori elettrici. Permette all'interruttore automatico Energy di proteggere i conduttori contro i sovraccarichi di corrente tenendo conto dello stato termico di questi conduttori.

In presenza di corrente, gli sganciatori elettronici h3+ regolano il riscaldamento dei conduttori. In assenza di corrente, gli sganciatori elettronici h3+ regolano il raffreddamento dei conduttori.

Sganciatori con e senza raffreddamento

Legenda:

- a) Sganciatore con considerazione del raffreddamento
- b) Sganciatore senza considerazione del raffreddamento
- 1) Intervento dello sganciatore tipo a)
- 2) Intervento dello sganciatore tipo b)

Sganciatori con e senza raffreddamento dei conduttori

L'esempio qui sopra mostra chiaramente come lo sganciatore a) scatta prima dello sganciatore b), assicurando così una protezione ottimale ai conduttori. Gli sganciatori elettronici h3+ sono sganciatori di tipo a). Inoltre, tengono conto del raffreddamento dei conduttori non solo prima, ma anche

dopo l'intervento. La fase di raffreddamento dura tra 1 e 35 minuti a seconda dell'impostazione della temporizzazione tr.

Nota

La funzione di imaging termico degli sganciatori elettronici h3+ non può essere disattivata.

3.2.2 Protezione Breve ritardo

La protezione Breve ritardo è concepita per proteggere dai cortocircuiti.

Curva Breve ritardo

Protezione Breve ritardo

Parametri Breve ritardo

\$ s	

lsd (x lr)	Soglia protezione Breve ritardo
tsd (ms)	Temporizzazione Breve ritardo
l²t (ON/OFF)	Funzione I ² t a tempo inverso

Impostazione della soglia Isd

La soglia di intervento lsd può essere regolata sul display incorporato, sul pannello display o con lo strumento di configurazione h3+.

Intervallo di regolazione della soglia Isd (x Ir)	Passo di regolazione
OFF - da 1,5 a 10	0,5

Quando la soglia Isd è OFF, la protezione Breve ritardo è disattivata. La tolleranza della soglia d'intervento Isd per la protezione Breve ritardo è di ±10%.

Regolazione della temporizzazione tsd

La temporizzazione tsd può essere regolata sul display incorporato, sul pannello display o con lo strumento di configurazione h3+.

Intervallo di regolazione della soglia Isd (x Ir)

50	100	200	300	400

La tolleranza del tempo d'intervento per la protezione Breve ritardo è:

- per tsd = 50 ms: -30 ms / +30 ms

- per tsd \geq 100 ms: -20 ms / +50 ms

Una funzione a tempo inverso $I^2t = K$ può essere attivata o disattivata quando si regola il Breve ritardo.

Questa funzione i²t permette di migliorare la selettività con i dispositivi a valle. Si attiva dalla soglia Isd e funziona fino a $10 \times Ir$.

3.2 Funzione di protezione

3.2.3 Protezione Istantanea

La protezione istantanea è concepita per proteggere dai cortocircuiti di forte intensità.

Curva di protezione istantanea

Protezione istantanea

Parametri istantanei

s

Soglia di protezione istantanea

Impostazione della soglia li

li (x In)

La soglia di intervento li può essere regolata sul display incorporato, sul pannelo display o con lo strumento di configurazione h3+.

Val. nominale (In)	Valori di regolazione del selettore lr max (A)	Passo di regolazione (x ln)	
40 A			
100 A		0.5	
160 A	4-0-11	-0,5	
250 A			

La tolleranza della soglia d'intervento della protezione Istantanea è di ±15%.

Tempo di intervento

La protezione istantanea non ha una temporizzazione regolabile.

Il tempo di non intervento è di 10 ms.

Il tempo di interruzione massimo è di 50 ms.

3.2.4 Protezione di Terra

La protezione di terra è una protezione contro i guasti di isolamento di forte intensità presenti nelle installazioni con un sistema di messa a terra TN-S.

È una protezione a tempo indipendente.

Curva di protezione di terra

Protezione di Terra

Parametri di terra

	lg (x ln)	Soglia protezione Terra
G	tg (ms)	Temporizzazione Terra
	i²tg (ON / OFF)	Funzione I ² t a tempo inverso

Impostazione della soglia Ig

La soglia di intervento lg può essere regolata sul display incorporato, sul pannello display o con lo strumento di configurazione h3+.

Val. nominale (In)	Intervalli di regolazione della soglia Ig (x In)	Passo di regolazione (x In)
40 A	OFF - da 0,4 a 1	
100 A		0.05
160 A	OFF - da 0,2 a 1	0,00
250 A		

La tolleranza della soglia d'intervento Ig della protezione di terra è di ±10%.

Quando la soglia Ig è OFF, la protezione di terra è disattivata.

Regolazione della temporizzazione tg

La temporizzazione tg può essere regolata sul display incorporato, sul pannello display o con lo strumento di configurazione h3+.

50 100 200 300 400 500	0	100	200	300	400	500
------------------------	---	-----	-----	-----	-----	-----

La tolleranza del tempo d'intervento della protezione di terra è di:

- per tg = 50 ms: -30 ms / +30 ms

- per tg \geq 100 ms: -20 ms / +50 ms

3.2 Funzione di protezione

3.2.4 Protezione di Terra

La protezione di terra è una protezione contro i guasti di isolamento di forte intensità. È simile a una protezione Breve ritardo. Ha anche una funzione l²t a tempo inverso, che può essere attivata o disattivata quando si regola questa protezione.

Questa funzione i²t permette di migliorare la selettività dei guasti a terra con i dispositivi a valle. Si attiva dalla soglia Ig funziona fino a In.

3.2.5 Protezione del neutro

La protezione del neutro è disponibile sugli interruttori automatici Energy 4P. È particolarmente utile quando la sezione del conduttore neutro è ridotta rispetto ai conduttori di fase.

Utilizza i parametri Lungo ritardo, Breve ritardo e protezione Istantanea.

Curva di protezione del neutro

Protezione del neutro

Regolazione delle soglie Ir e Isd della protezione del neutro

Intervallo di regolazione del coefficiente N (%) Parametri impattati

	•
OFE 50 100	Il coefficiente è applicato al valore di
	regolazione delle soglie Ir e Isd delle fasi

La soglia di corrente Istantanea rimane identica a quella delle fasi.

Il coefficiente N può essere regolato sul display incorporato, sul pannello display o con lo strumento di configurazione h3+.

Temporizzazione della protezione del neutro

Le termporizzazioni della protezione del neutro rimangono identiche ai valori di regolazione delle temporizzazioni delle fasi.

3.2.6 Funzione Selettività per Zona (ZSI)

La funzione Selettività per Zona è concepita per ridurre le sollecitazioni elettrodinamiche nella distribuzione elettrica (conduttori e sistemi barre) quando è attivata selettività cronometrica. Si applica al tratto a monte della distribuzione elettrica composto principalmente da interruttori aperti e interruttori automatici di tipo scatolato. Comporta il collegamento degli interruttori automatici a monte e a valle con un cavo speciale. Questo collegamento può inibire o meno la temporizzazione tsd e/o tg degli interruttori automatici a seconda della posizione del guasto di cortocircuito. Quando la funzione Selettività per Zona è attivata su un interruttore automatico, essa inibisce le sue impostazioni di temporizzazione e ha un tempo di intervento pressoché istantaneo. Quando non è attivata, l'interruttore automatico opera in funzione della regolazione delle temporizzazioni di intervento.

La funzione di Selettività per Zona è complementare alla selettività cronometrica (temporizzazione tsd e tg). In nessun caso può sostituirla.

È applicabile alla protezione Breve ritardo e alla protezione di Terra. Ecco due esempi per illustrarne il funzionamento.

Esempio di Selettività di zona

In primo luogo, gli interruttori automatici Q1, Q2, Q3, Q4 sono impostati sulle loro rispettive soglie che permettono di attivare la selettività cronometrica prevista.

Esempio di guasto a):

- In caso di guasto a valle dell'interruttore automatico Q3, gli interruttori Q1, Q2 e Q3 rilevano il guasto contemporaneamente. Grazie al cavo di collegamento tra gli interruttori automatici, l'interruttore Q3 informa l'interruttore Q2 di aver rilevato il guasto. L'interruttore Q2 informa quindi l'interruttore Q1 di aver rilevato il guasto. Gli interruttori Q1 e Q2 mantengono quindi le loro rispettive temporizzazioni in modo che l'interruttore Q3 possa eliminare il guasto istantaneamente.

3.2 Funzione di protezione

3.2.6 Funzione Selettività per Zona (ZSI)

Esempio di guasto b):

- In caso di guasto a valle dell'interruttore automatico Q2, solo gli interruttori Q1 e Q2 rilevano il guasto contemporaneamente. Grazie al cavo di collegamento tra gli interruttori automatici, l'interruttore Q2 informa l'interruttore Q1 di aver rilevato il guasto. L'interruttore Q1 mantiene quindi le proprie temporizzazioni mentre l'interruttore Q2 inibisce le proprie temporizzazioni per eliminare istantaneamente il guasto.

Impostazione della protezione ZSI

L'interruttore automatico Energy P160 non richiede alcuna protezione ZSI per essere configurato. È dotato di un'uscita ZSI (ZSI2) per collegare un interruttore automatico a monte. È concepito principalmente per proteggere il circuito di alimentazione e non permette di riconoscere la ricezione di un segnale ZSI da un interruttore a valle.

L'interruttore automatico Energy P250 deve attivare la protezione ZSI per riconoscere la selettività per zona.

Impostazioni della protezione ZSI su P250

P250: Impostazione ZSI

ZSI protezione Breve ritardo	ON-OFF (OFF per impostazione predefinita)
ZSI protezione di Terra	ON-OFF (OFF per impostazione predefinita)

Nota

È importante assicurare che la protezione ZSI su un interruttore automatico P250 sia mantenuta disattivata quando non si utilizza la funzione di selettività per zona. Infatti, in questo caso, impostando la protezione ZSI su ON si riduce sistematicamente il tempo di intervento a un tempo quasi istantaneo che va da 20 a 80 ms.
3.3.1 Panoramica delle misure

Lo sganciatore Energy permette di misurare i seguenti tipi di variabili:

		Display incorporato	Pannello display	Modbus	Strumento di configurazione HTP610H
Misure in tempo reale					
Corrente					
Fase e neutro	I1, I2, I3; IN	x	x	х	x
Media aritmetica	lavg = (l1 + l2 + l3)/3	-	x	х	x
Massimo istantaneo	Imax of I1, I2, I3, IN	-	x	x	x
Minimo istantaneo	Imin of I1, I2, I3	-	x	x	x
Guasto di terra	IG	x	x	x	x
Squilibrio per fasi	I1 Unba, I2 Unba, I3 Unba; IN Unba	-	-	x	x
Squilibrio massimo istantaneo	Max Unba I	-	x	x	x
Tensioni					
fase-fase	U12, U23, U31	x	x	x	x
fase-neutro	V1N, V2N, V3N	x	x	x	x
Media aritmetica fase-fase	Uavg = (U12+U21+U23) / 3	-	x	x	x
Media aritmetica fase-neutro	Vavg = (V1N + V2N + V3N) / 3	-	x	x	x
Massimo istantaneo	Tensioni fase-fase	-			
	e fase-neutro		x	X	X
Minimo istantaneo	Tensioni fase-fase	_	_	x	x
	e fase-neutro			N N	
Squilibrio massimo	Max Unha II Max Unha V	-	x	x	x
Seguenza di fase	1-2-3. 1-3-2	x	x	x	x
	,	1	1	1	1
Potenze					
Attiva	P totale per fase	х	х	х	x
Reattiva	Q totale per fase	x	x	x	x
Apparente	S totale per fase	x	x	x	x
Valori massimi e minimi dall	ultimo reset				
Corrente massima, tensione per fase e potenza per fase		x	x	x	x
Medie massime su intervallo e IG		-	x	x	x
Asimmetrie di corrente massime, fattori di potenza, THD		-	_	x	x
Variabili minime corrispondenti		-	-	x	x
Energie			1		

Attiva (kWh), reattiva (kvarh), apparente (kVAh)	Ealn, Erln, consumata, prodotta, Es	x (solo Eain e Erin)	x	x	x
Attiva (kWh), reattiva (kvarh), parziale assoluta	Ea Abs, Er Abs	-	-	x	x
Attiva (kWh), reattiva (kvarh), parziale firmata	Ea, Er	-	-	x	x
Totale attiva (kWh)	Ealn consumata, EaOut prodotta	-	-	x	x

3.3.1 Panoramica delle misure

-

(1)		Display incorporato	Pannello display	Modbus	Strumento di configurazione HTP610H
Medie nell'intervallo (valori d	della domanda)	1			
Potenza attiva (kW), reattiva (kvar), apparente (kVA)	P Dmd, Q Dmd, S Dmd Totale/per fase	_	x	x	x
Potenza massima dall'ultimo reset	Max P Dmd, Max Q Dmd, Max S Dmd Totale/per fase	-	x	x	x
Corrente	I1 Dmd, I2 Dmd, I3 Dmd; IN Dmd, Iavg Dmd	_	-	x	x
Corrente massima dall'ultimo reset	Max I1 Dmd Max I2 Dmd Max I3 Dmd Max IN Dmd	_	_	x	x
Intervallo di integrazione mobile, fisso o sincronizzato da Modbus	Regolabile da 5 a 60 minuti con incrementi di un minuto	-	x	x	x

Fattore di potenza

Fattore di potenza e cos ϕ (fondamentale)	Totale	x (solo cos φ)	x	x	x
Fattore di potenza e $\cos \phi$ (fondamentale)	per fase	-	x	x	x

Distorsione armonica totale

THD in tensione	THDU (fase-fase), THDV (fase-neutro)	-	x	x	x
THD in corrente	THDI per fase	-	х	x	х

Altri

Frequenza	f	x	х	x	х
Rotazione di fase		х	х	х	х
Quadrante		-	х	х	х

3.3.2 Misure in tempo reale

Lo sganciatore Energy fornisce le seguenti misure di base delle variabili elettriche in tempo reale (ogni secondo):

- corrente per ogni fase e neutro (sulla versione 4P)
- corrente di guasto a terra (risultante da 3 o 4 correnti di conduttori attivi)
- tensioni fase/fase e fase/neutro per il modello tetrapolare
- indicazione del senso di rotazione della fase
- frequenza della rete

Lo sganciatore può essere configurato per utilizzare una rotazione inversa delle fasi come riferimento di sequenza delle fasi (vedere paragrafo 3.3.10 pag. 49). Questa configurazione è effettuabile dal pannello display HTD210H o dallo strumento di configurazione HTP610H.

Variabile elettrica	Simbolo usato	Versione 3 P	Versione 4 P
Corrente efficace delle fasi o del neutro	11, 12, 13, IN	x (eccetto IN)	x
Corrente di terra efficace (sistema trifase con neutro)	IG	-	x
Corrente di terra efficace (sistema trifase senza neutro)	IG	x	-
Tensione efficace	V1N, V2N, V3N	-	x
Tensione efficace	U12, U23, U31	х	x
Rotazione delle fasi	1,2,3; 1,3,2	х	x
Frequenza	f	х	x

Inoltre, lo sganciatore Energy calcola le seguenti variabili elettriche associate in tempo reale (ogni secondo):

Variabile elettrica	Calcolo delle variabili	Versione 3 P	Versione 4 P
Corrente efficace media	$I_{moyen} = \frac{I_1 + I_2 + I_3}{3}$	x	x
Corrente efficace istantanea massima con neutro	$I_{max} = \max(I_1, I_2, I_3, I_N)$	-	x
Corrente efficace istantanea massima senza neutro	$I_{max} = \max(I_1, I_2, I_3)$	x	-
Corrente efficace istantanea minima	$I_{min} = \min(I_1, I_2, I_3)$	x	x
Tensione efficace media fase-neutro	$V_{moyen} = \frac{V_{1N} + V_{2N} + V_{3N}}{3}$	-	x
Tensione efficace massima fase-neutro	$V_{max} = \max(V_{1N}, V_{2N}, V_{3N})$	-	x
Tensione efficace minima fase-neutro	$V_{min} = \min(V_{1N}, V_{2N}, V_{3N})$	-	x
Tensione efficace media fase-fase	$U_{moyen} = \frac{U_{12} + U_{23} + U_{31}}{3}$	x	x
Tensione efficace massima fase-fase	$U_{max} = \max(U_{12}, U_{23}, U_{31})$	x	x
Tensione efficace minima fase-fase	$U_{min} = \min(U_{12}, U_{23}, U_{31})$	x	x

3.3.3 Misure min/max

Lo sganciatore Energy calcola in tempo reale i valori massimi e minimi raggiunti dall'ultimo reset. Alcuni valori sono marcati temporalmente.

Tutti questi valori tengono conto dei valori positivi e negativi. Per esempio, se il valore massimo precedente era 25 e viene misurato un valore di -30, il nuovo valore massimo diventa -30.

Variabile	monitorata		Timbro orario	Versione 3 P	Versione 4 P
Corrente					
Massima	istantanea	- di I1, I2 e I3	-	x	-
		- di l1, l2, l3 e lN	-	-	х
	dall'ultimo reset	- di ogni fase	х	х	х
		- di IN	х	-	х
		 delle sovracorrenti del minimo di l1, l2 e l3 della corrente media di IG 	-	x	x
		- dello squilibrio di IN	-	-	х
		dello squilibrio per fasedei massimi squilibri	-	x	x
Minima	istantanea	- di l1, l2 e l3	-	x	x
	dall'ultimo reset	- di ogni fase	-	х	х
		- di IN	-	-	х
		 delle sovracorrenti del massimo di 11, 12 e 13 della corrente media di IG 	-	x	x
		- dello squilibrio di IN	-	-	x
		dello squilibrio per fasedei massimi squilibri	-	x	x

Tensione

Massima	Istantanea	- delle tre tensioni fase-neutro	-	-	х
		- delle tre tensioni fase-fase	-	x	x
	dall'ultimo reset	- di ogni tensione fase-neutro	х	-	х
		- di ogni tensione fase-fase	х	х	х
		 dello squilibrio di ogni tensione fase-neutro dei massimi degli squilibri fra fase e neutro 	-	_	x
		 dello squilibrio di ogni tensione fase-fase dei minimi degli squilibri fra le fasi della tensione media 	_	x	x
Minima	Istantanea	- delle tre tensioni fase-neutro	-	-	x
		- delle tre tensioni fase-fase	-	x	x

Variabile	e monitorata		Timbro orario	Versione 3 P	Versione 4 P
Minima	dall'ultimo reset	- di ogni tensione fase-neutro	x	-	x
		- di ogni tensione fase-fase	x	х	x
		 dello squilibrio di ogni tensione fase-neutro dei massimi degli squilibri fra fase e neutro 	-	-	x
		 dello squilibrio di ogni tensione fase-fase dei massimi degli squilibri composti della tensione media 	-	x	x
Frequen	za				
Massimo	della frequenza		х	x	x

Massimo della frequenza	Х	Х	Х
Minimo della frequenza	х	х	х

Potenze

Massima	delle potenze totali	- attiva - reattiva - apparente	-	x	x
	delle potenze per fase	- attiva - reattiva - apparente	-	-	x
Minima	delle potenze totali	- attiva - reattiva - apparente	-	x	x
	delle potenze per fase	- attiva - reattiva - apparente	-	-	x
Massimo del fattore di potenza totale e $\cos \phi$ totale			-	x	x
Minimo de	mo del fattore di potenza totale e cos φ totale $-$ x x				

Distorsione armonica totale della corrente

Massima	del THD della corrente	-	per fase massimo istantaneo	-	x	x
Minima	del THD della corrente	-	per fase massimo istantaneo	-	x	x

Distorsione armonica totale della tensione

Massima	del THD delle tensioni fase-neutro	-	-	х
	del THD delle tensioni fase-fase	-	х	х
Minima	del THD delle tensioni fase-neutro	-	-	х
	del THD delle tensioni fase-fase	-	х	х

Nota

Alcuni o tutti questi valori min/max possono essere reinizializzati utilizzando il comando di reset a seconda dell'interfaccia utilizzata:

- display incorporato: reimposta le tensioni, le correnti e le potenze massime e azzera i contatori di energia
- pannello display HTD210H: reimposta tutti i valori min/max e i contatori di energia
- strumento di configurazione HTP610H: reimposta tutti i valori min/max e i contatori di
- energia

3.3.4 Misura degli squilibri

Lo squilibrio di tensione è espresso in % rispetto alla media aritmetica della tensione corrispondente:

$$U_{avg} = \frac{U12 + U23 + U31}{3}$$

$$U_{pg} \text{ squilibrio} = \frac{U_{pg} - U_{avg}}{U_{avg}} \times 100 \text{ con pg} = 12, 23, 31$$

Principio dello squilibrio di tensione

Elenco dei valori di squilibrio:

Variabile elettrica	Simbolo usato	Versione 3 P	Versione 4 P
Squilibrio della corrente di fase	I1 Unb, I2 Unb, I3 Unb	x	x
Squilibrio della corrente di neutro	IN Unb	-	x
Squilibrio massimo istantaneo della corrente di fase senza neutro	Max Unb I	x	-
Squilibrio massimo istantaneo della corrente di fase con neutro	Max Unb I	-	x
Squilibrio di tensione fase-fase	U12 Unb, U23 Unb, U31 Unb	x	x
Squilibrio massimo istantaneo di tensione fase-fase	Max Unb U	x	x
Squilibrio di tensione fase-neutro	V1N Unb, V2N Unb, V3 Unb	-	x
Squilibrio massimo istantaneo di tensione fase-neutro	Max Unb V	-	x

Nota

I valori di squilibrio sono indicati sotto forma di valori relativi in %.

I valori massimi di squilibrio sono espressi sotto forma di valori assoluti in %.

3.3.5 Misura della potenza

Lo sganciatore Energy calcola le seguenti potenze elettriche in tempo reale (ogni secondo):

- potenza attiva per fase
- potenza reattiva per fase
- potenza apparente per fase
- potenza attiva totale
- potenza reattiva totale
- potenza apparente totale

L'elenco esaustivo delle variabili calcolate, associate alla loro definizione matematica e alla loro disponibilità a seconda della versione 3P o 4P, è riportato nella seguente tabella:

Parametro elettrico	Simbolo usato	Definizione	Versione 3 P	Versione 4 P
Potenza attiva per fase	P1, P2, P3	$P_p = \frac{1}{N} \cdot \sum_{k=0}^{N-1} \left(v_{pN_k} \cdot i_{p_k} \right)$	_	x
Potenza reattiva per fase	Q1, Q2, Q3	$Q_p = Signe(\varphi_p) \cdot \sqrt{S_p^2 - P_p^2}$	-	x
Potenza apparente per fase	S1, S2, S3	$S_p = V_{pN} \cdot I_{pA}$	-	x
Potenza attiva totale	Ptot	$P = P_1 + P_2 + P_3$	x	x
Potenza reattiva totale	Qtot	Somma vettoriale o aritmetica a seconda della configurazione, vedi paragrafo 3.3.10	x	x
Potenza apparente totale	Stot	Somma vettoriale o aritmetica a seconda della configurazione, vedi paragrafo 3.3.10	x	x

3.3.5 Misura della potenza

Dettagli dei calcoli

I calcoli di queste potenze tengono conto delle armoniche fino all'ordine 31.

Simbolo	Definizione
N	Numero totale di campioni per periodo in rete
т	Periodo misurato, in secondi
i_{p_k}	Numero di campione k della corrente di fase p
v_{pN_k}	Numero di campione k della tensione tra la fase p e il neutro
$\overline{arphi_p}$	Differenza di fase tra la corrente e la tensione per la fase p
h _i	Componente armonica di ordine i

Il campionamento consiste nel prelevare, a intervalli regolari, campioni dei valori istantanei dei segnali analogici di corrente e tensione. La digitalizzazione delle variabili elettriche effettuata dallo sganciatore Energy risulta in un insieme di valori discreti tutti sincronizzati tra loro. Questo metodo permette anche di tener conto dello sfasamento tra la tensione e la corrente ($\cos \phi$).

Segno della potenza

I valori di potenza sono indicati con segno + o meno.

L'interruttore automatico Energy può essere alimentato sia dall'alto che dal basso. È quindi importante configurare il segno del valore della potenza in linea con il senso dell'alimentazione. Questa configurazione è effettuabile dal pannello display HTD210H o dallo strumento di configurazione HTP610H (vedere paragrafo 3.3.10).

Le potenze attive sono indicata con il segno + quando vengono consumate, cioè quando l'apparecchiatura funziona come utenza.

Le potenze attive sono indicate con il segno - quando vengono generate, cioè quando l'apparecchiatura funziona come generatore.

Le potenze reattive sono indicate con lo stesso segno dell'energia e della potenza attiva, quando la corrente è in ritardo rispetto alla tensione, cioè quando l'apparecchiatura è induttiva.

Le potenze reattive sono indicate con il segno opposto a quello dell'energia e della potenza attiva, quando la corrente è in anticipo rispetto alla tensione, cioè quando l'apparecchiatura è capacitiva.

Il quadrante operativo (I, II, III, IV) è quindi indicato in funzione del segno della potenza.

	P < 0		P > 0	
Q > 0	li	Capacitivo (anticipo)	I	Induttivo (ritardo)
Q < 0	111	Induttivo (ritardo)	IV	Capacitivo (anticipo)

3.3.6 Misure dell'energia

Lo sganciatore Energy calcola i vari livelli di energia integrando la potenza istantanea su un periodo di rete.

Lo sganciatore Energy alimenta diversi contatori di energia che possono conteggiare fino a 4.294.967.295 kWh / kvarh / kVAh. Tutti questi contatori forniscono valori assoluti senza segno, tranne i contatori con segno algebrico. Conteggiano l'energia accumulata aumentando ogni secondo.

I contatori di energia parziale possono essere reimpostati sul display incorporato, sul pannello display o con lo strumento di configurazione HTP610H.

Contatore di energia parziale	Simbolo usato	Reset	
Energia attiva consumata	Ea In,	x	
Energia attiva prodotta	Ea Out	x	
Energia reattiva consumata	Er In	x	
Energia attiva prodotta	Er Out	x	
Energia attiva assoluta	Ea Abs	~	
(consumata + prodotta)		^	
Energia reattiva assoluta	Er Abs	x	
(consumata + prodotta)			
Energia attiva rilevata	Ea	x	
Energia reattiva rilevata	Er	x	
Energia apparente	Es	x	

Contatore di energia totale	Variabile elettrica	Reset	
Energia attiva consumata	Ea In NR	Nessun reset	
Energia attiva prodotta	Ea Out NR	Nessun reset	

Nota

I valori ErIn, ErOut, Er Abs, Er, Es dipendono dalla convenzione di somma aritmetica o vettoriale delle potenze reattive e apparenti (vedi configurazione, paragrafo 3.3.10).

3.3.7 Misura dei valori mediati su un intervallo

Lo sganciatore Energy calcola i valori medi della corrente e della potenza mediante integrazione su un determinato intervallo di tempo. Si tratta di valori mediati su un intervallo di misura. Questi valori sono utili per creare un profilo di carico delle utenze alimentate dall'interruttore automatico Energy. Non devono essere confusi con le medie istantanee (corrente media istantanea, ecc.).

Principio di calcolo

Lo sganciatore Energy calcola un valore mediato su un intervallo utilizzando la misura elettrica G su un intervallo di tempo T diviso per questo stesso intervallo T.

$$G_{moyen} = \frac{1}{T} \int_0^T G.\,dt$$

L'intervallo di tempo T indica l'intervallo di integrazione configurabile.

Ci sono 3 tipi di intervallo di integrazione:

- intervallo di integrazione fisso
- intervallo di integrazione mobile
- intervallo di integrazione sincronizzato (Sync. Bus)

Intervallo di integrazione fisso

La durata dell'intervallo T può essere configurata tra 5 e 60 minuti in incrementi di 1 minuto.

Intervallo di integrazione mobile

Gli intervalli di calcolo sono consecutivi. Un nuovo valore medio viene prodotto ogni minuto.

3.3.7 Misura dei valori mediati su un intervallo

Intervallo di integrazione mobile

La durata dell'intervallo T può essere configurata tra 5 e 60 minuti in incrementi di 1 minuto.

Intervallo di integrazione sincronizzato

Quando il primo impulso di sincronizzazione viene ricevuto, viene inizializzato un primo calcolo del valore mediato. Per ogni nuovo impulso, l'integrazione in corso viene arrestata e il valore medio disponibile viene aggiornato. Allo stesso tempo, viene inizializzato un nuovo calcolo.

L'intervallo di tempo tra due impulsi di sincronizzazione deve essere compreso tra 1 e 60 minuti. Se l'intervallo supera i 60 minuti, l'integrazione della misura si arresta e le misure fino al successivo impulso di sincronizzazione non vengono prese in considerazione.

Intervallo di integrazione sincronizzato

Massimo dei valori mediati

Per ogni periodo di valore mediato calcolato nell'intervallo di tempo, viene memorizzato il valore massimo. I valori massimi possono essere reimpostati tramite lo strumento di configurazione HTP610H o tramite il pannello display HTD210H.

L'elenco esaustivo delle variabili calcolate in funzione della versione 3P o 4P e l'interfaccia di visualizzazione sono riportate nella tabella seguente:

Variabile elettrica	Simbolo usato	Versione 3P	Versione 4P	Pannello display	Modbus	Srumento di configurazione HTP610H
Correnti di fase	l1 Dmd l2 Dmd l3 Dmd	x	x	-	x	x
Corrente di neutro	IN Dmd	-	x	-	х	х
Corrente media	lavg Dmd	x	х	-	x	х
Potenza attiva per fase	P1 Dmd P2 Dmd P3 Dmd	-	x	x	x	x
Potenza attiva totale	Ptot Dmd	x	x	x	x	x
Potenza reattiva per fase	Q1 Dmd Q2 Dmd Q3 Dmd	-	x	x	x	x
Potenza reattiva totale	Qtot Dmd	x	x	x	x	x
Potenza apparente per fase	S1 Dmd S2 Dmd S3 Dmd	-	x	x	x	x
Potenza apparente totale	Stot DSmd	x	x	x	x	x
Correnti massime di fase	Max I1 Dmd Max I2 Dmd Max I3 Dmd	x	x	-	x	x
Corrente massima del neutro	Max IN Dmd	-	x	-	x	x
Corrente massima media	Max lavg Dmd	x	x	-	x	x
Potenza attiva massima per fase	Max P1 Dmd Max P2 Dmd Max P3 Dmd	-	x	x	x	x
Potenza attiva massima totale	Max Ptot Dmd	x	x	x	x	x

\mathbf{i}	Variabile elettrica	Simbolo usato	Versione 3P	Versione 4P	Pannello display	Modbus	Srumento di configurazione HTP610H
	Potenza reattiva massima per fase	Max Q1 Dmd Max Q2 Dmd Max Q3 Dmd	-	x	x	x	x
	Potenza reattiva massima totale	Max Qtot Dmd	x	x	x	x	x
	Potenza massima apparente per fase	Max S1 Dmd Max S2 Dmd Max S3 Dmd	_	x	x	x	x
	Potenza massima apparente totale	Max Stot DSmd	x	x	x	x	x

3.3.7 Misura dei valori mediati su un intervallo

Il tipo di intervallo di integrazione e la lunghezza dell'intervallo T possono essere configurati sul pannello display HTD210H e con lo strumento di configurazione HTP610H (vedi paragrafo 3.3.10).

Nota

I valori Qtot Dmd, Stot Dmd, Max Q1 Dmd, Max Q2 Dmd, Max Q3 Dmd, Max Qtot Dmd e Max Stot Dmd dipendono dalla convenzione di somma aritmetica o vettoriale della potenza reattiva e apparente (vedere paragrafo 3.3.10 – Impostazione della convenzione di calcolo delle potenze reattive e apparenti).

3.3.8 Misura della distorsione armonica totale (THD)

Lo sganciatore Energy calcola i livelli di distorsione armonica totale dalle misure di corrente e tensione in tempo reale (ogni secondo).

Questi calcoli sono eseguiti fino all'ordine 31 delle armoniche.

I livelli di distorsione armonica totale sono indicatori della qualità della distribuzione dell'energia. Il THDi è usato per determinare il livello di deformazione attuale dell'onda. Il THDU o THDV è usato per determinare il livello di deformazione dell'onda di tensione.

Distorsione armonica totale THD della corrente THDi

Il THD della corrente è la percentuale del valore quadratico medio delle armoniche di corrente di un ordine superiore a uno, rispetto al valore quadratico medio della corrente armonica di ordine uno. Poiché il livello è calcolato in relazione alla fondamentale, il suo valore può superare il 100%.

$$THD_{Ip} = \frac{\sqrt{I_{p h_2}{}^2 + \dots + I_{p h_{31}}{}^2}}{I_{p h_1}}$$

Simbolo della formula di calcolo Definizione

 I_{ph_n}

Componente armonica efficace di ordine n della corrente del polo p

Il THDi o, in altre parole, il tasso di deformazione dell'onda di corrente è causato dalla non linearità dell'utenza, che produce forme d'onda di corrente non sinusoidali. Quindi il THDi permette di identificare le potenziali utenze con effetti perturbatori nella distribuzione dell'energia. Un THDi < 10% mostra una bassa distorsione che è generalmente accettabile. Un THDi fino al 50% indica livelli di distorsione rischiosi (rischio di surriscaldo, ecc.). Un THDi superiore al 50% è un alto livello di armonica e può provocare gravi perturbazioni, pericolosi surriscaldamenti e rischi di malfunzionamenti se l'installazione non è stata progettata correttamente.

Distorsione armonica totale della tensione THD, THDU, THDV

La THD della tensione è la percentuale del valore quadratico medio delle armoniche di corrente di un ordine superiore a uno, rispetto al valore quadratico medio della corrente armonica di ordine uno.

Il suo valore può teoricamente superare il 100% ma, in pratica, non supera il 25%.

$$THD_{Upg} = \frac{\sqrt{U_{pg h_2}^2 + \dots + U_{pg h_3}^2}}{U_{pg h_1}}$$

Simbolo della formula di calcolo Definizione

IIt.	Componente armonica efficace di ordine n della tensione
$o pg n_n$	con pg = 12, 23, 31

La THD della tensione è utilizzata per valutare l'impatto dell'impedenza della linea sulla qualità della tensione a livello delle utenze perturbatrici. Più alta è l'impedenza delle linee che alimentano queste utenze, più alta è la THD della tensione.

L'elenco esaustivo delle variabili calcolate in funzione della versione 3P o 4P è riportato nella tabella seguente:

Variabile elettrica	Simbolo usato	Versione 3 P	Versione 4 P
THD della corrente di fase	THD 11, THD 12, THD 13	х	x
THD della tensione fase-neutro	THD V1N, THD V2N, THD V3N	-	x
THD della tensione fase-fase	HD U12, THD U23, THD U31	х	x

3.3.9 Misura dei fattori di potenza

Lo sganciatore Energy calcola in tempo reale (ogni secondo) il fattore di potenza (PFtot) sulla base del rapporto tra la potenza attiva totale e la potenza apparente totale. Calcola anche i fattori di potenza per fase sulla base dei rapporti tra la potenza attiva totale per fase e la potenza apparente per fase.

Esempio: Formula del fattore di potenza per fase.

$$PF_x = \frac{P_x}{S_r}$$

Simbolo della formula di calcolo Definizione

х

Numero di fase

Lo sganciatore Energy calcola in tempo reale (ogni secondo) anche il cos ϕ totale sulla base del rapporto tra la potenza attiva totale ridotta alle armoniche di ordine 1 e la potenza apparente totale ridotta alle armoniche di ordine 1. Inoltre, calcola il cos ϕ per fase.

3.3.9 Misura dei fattori di potenza

I fattori di potenza e i $\cos \varphi$ sono indicatori della qualità della distribuzione dell'energia. Il miglioramento di questi indicatori permette di:

- diminuire il consumo di energia reattiva che può ridurre le penali relative ai costi del consumo elettrico
- ridurre la sezione dei cavi
- ridurre le perdite in linea
- ridurre la caduta di tensione
- aumentare la potenza disponibile del trasformatore.

L'elenco esaustivo delle variabili calcolate in funzione della versione 3P o 4P è riportato nella tabella seguente:

Variabile elettrica	Simbolo usato	Versione 3 P	Versione 4 P
Fattore di potenza per fase	PF1, PF2, PF3	-	x
Fattore di potenza totale (kW)	PFtot	x	x
$\cos \phi$ per fase (fattore di potenza della fondamentale)	cos φ 1, cos φ 2, cos φ 3	-	x
Cos ϕ totale (fattore di potenza della fondamentale)	cos φ tot	x	x

Nota

I valori PF1, PF2, PF3, PFtot, $\cos \varphi 1$, $\cos \varphi 2$, $\cos 3 \varphi e \cos \varphi$ tot dipendono dalla convenzione di somma aritmetica o vettoriale della potenza reattiva e apparente (vedere paragrafo 3.3.10 - Impostazione della convenzione di calcolo della potenza reattiva e apparente).

Segno del Fattore di potenza PF e cos ϕ

Lo sganciatore Energy permette di configurare la convenzione di segno da applicare ai valori di fattore di potenza e cos ϕ

Sono possibili due opzioni:

- Convenzione IEC: Il segno dei fattori di potenza e $\cos \phi$ segue il segno della potenza attiva

- **Convenzione IEEE:** Il segno dei fattori di potenza e $\cos \varphi$ è modificato per indicare se il sistema elettrico è capacitivo (segno +) o induttivo (segno -)

Convenzione IEC

	P < 0		P > 0	
Q > 0	2	Capacitivo (anticipo)	1	Induttivo (ritardo)
		PF < 0		PF > 0
		$\cos \phi < 0$		$\cos \phi > 0$
Q < 0	3	Induttivo (ritardo)	4	Capacitivo (anticipo)
		PF < 0		PF > 0
		$\cos \phi < 0$		$\cos \phi > 0$

La convenzione IEC è indicata quando l'apparecchiatura a valle dell'interruttore automatico può funzionare come utenza o come generatore.

Convenzione IEEE

	P < 0		P > 0	
Q > 0	li	Capacitivo (anticipo)	I	Induttivo (ritardo)
		$\begin{array}{l} PF > 0 \\ cos \; \phi > 0 \end{array}$		PF < 0 $\cos \phi < 0$
Q < 0	111	Induttivo (ritardo) PF < 0 $\cos \phi < 0$	IV	Capacitivo (anticipo) PF > 0 $\cos \phi > 0$

La convenzione IEEE è indicata quando l'apparecchiatura a valle dell'interruttore automatico può funzionare esclusivamente come utenza o esclusivamente come generatore. In questo caso, il segno + indica il comportamento capacitivo e il segno - indica il comportamento induttivo.

Nota

La convenzione di segno dei fattori di potenza e cos ϕ è configurabile dal pannello display HTD210H o dallo strumento di configurazione HTP610H (vedi paragrafo 3.3.10 - Configurazione delle misure).

3.3.10 Configurazione delle misure

Le configurazioni seguenti sono effettuabili dal pannello display HTD210H o dallo strumento di configurazione HTP610H.

Regolazione della sequenza di fase di riferimento

Questo parametro è utilizzato per configurare la sequenza delle fasi della rete che alimenta l'interruttore automatico Energy. Nel caso di una rete a rotazione inversa delle fasi, la sequenza di riferimento è: 1, 2, 3.

Sequenza di fase

Impostazioni sequenza di fase	Impostazioni predefinite
1, 2, 3 - 1, 3, 2	1, 2, 3

3.3.10 Configurazione delle misure

Impostazione della convenzione del segno di potenza

Il parametro della convenzione dell'indicazione di potenza permette di configurare il segno di potenza secondo il senso di alimentazione dell'interruttore automatico Energy.

Indicazione della potenza

Convenzione segno P	Impostazioni predefinite
Positivo - negativo	Positivo

Configurare correttamente questa convenzione permette di rispettare la configurazione a 4 quadranti:

- Potenza attiva positiva quando l'apparecchiatura a valle funziona come utenza
- Potenza reattiva, da un lato con lo stesso segno della potenza attiva quando l'apparecchiatura a valle è induttiva, dall'altro con il segno opposto quando l'apparecchiatura a valle è capacitiva

	P < 0		P > 0		
Q > 0	li	Capacitivo (anticipo)	I	Induttivo (ritardo)	
Q < 0	III	Induttivo (ritardo)	IV	Capacitivo (anticipo)	

Impostazione della convenzione di calcolo della potenza reattiva e apparente

Questo parametro permette di configurare la convenzione per il calcolo della potenza reattiva totale e della potenza apparente totale.

Il calcolo di queste due variabili non produrrà lo stesso valore perché dipende dal fatto che la somma delle componenti di fase sia vettoriale o aritmetica.

La figura seguente mostra chiaramente la differenza nel caso della potenza apparente totale:

Somma vettoriale e aritmetica

Simbolo	Definizione
Pa	Potenza attiva L1
Pb	Potenza attiva L2
Рс	Potenza attiva L3
Qa	Potenza reattiva L1
Qb	Potenza reattiva L2
Qc	Potenza reattiva L3
Sa	Potenza apparente L1
Sb	Potenza apparente L2
Sc	Potenza apparente L3
sv	Potenza apparente totale: somma vettoriale
SA	Potenza apparente totale: somma aritmetica

Nella figura sopra, il valore della potenza apparente totale SA per somma aritmetica è maggiore del valore della potenza apparente totale SV per somma vettoriale.

Impostazioni convenzione calcolo	Impostazioni predefinite		
Aritmetica - Vettoriale	Vettoriale		

Elenco dei valori su cui incide l'impostazione della convenzione di calcolo.

Valore	Definizione
Qtot	Potenza reattiva totale
Stot	Potenza apparente totale
Erln	Energia reattiva consumata
ErOut	Energia reattiva generata
Er Abs	Energia reattiva assoluta
Er	Energia reattiva in valore indicata
Es	Energia apparente
PF1	Fattore di potenza L1
PF2	Fattore di potenza L2
PF3	Fattore di potenza L3
PFtot	Fattore di potenza totale (kW)
cos φ tot	Cos φ totale
Qtot Dmd	Valore mediato (su intervallo) della potenza reattiva totale
Stot Dmd	Valore mediato (su intervallo) della potenza apparente totale
Max Qtot Dmd	Max. valore mediato (su intervallo) della potenza reattiva totale
Max Stot Dmd	Max. valore mediato (su intervallo) della potenza apparente totale

3.3.10 Configurazione delle misure

Impostazione della convenzione del segno del fattore di potenza e del cos ϕ Questo parametro permette di configurare il segno dei fattori di potenza e cos ϕ secondo la convenzione IEC o la convenzione IEEE vedi grafici seguenti.

Convenzione IEC

IEC	P < 0		P > 0	
Q > 0	li	Capacitivo (anticipo)	I	Induttivo (ritardo)
		PF < 0		$PF > 0$ $\cos \phi > 0$
Q < 0	111	Induttivo (ritardo)	IV	Capacitivo (anticipo)
		PF < 0		$PF > 0$ $\cos \phi > 0$

La convenzione IEC è indicata quando l'apparecchiatura a valle dell'interruttore automatico può funzionare come utenza e come generatore.

Convenzione IEEE

	P < 0		P > 0	
Q > 0	li	Capacitivo (anticipo)	I	Induttivo (ritardo)
		PF > 0		$PF < 0 \\ \cos \phi < 0$
Q < 0	111	Induttivo (ritardo) PF < 0	IV	Capacitivo (anticipo) PF > 0 $\cos \phi > 0$

Impostazioni convenzione	Impostazioni
segno PF	predefinite
IEC - IEEE	IEC

Impostazione dei parametri di valore mediato nell'intervallo

Questo parametro permette di configurare la lunghezza dell'intervallo di integrazione il tipo di integrazione per eseguire correttamente i calcoli del valore mediato. Il calcolo dei valori mediati su un intervallo specifico comporta l'integrazione delle correnti e delle potenze su un intervallo di tempo (vedi paragrafo 3.3.7).

Impostazione periodo domanda	Impostazione predefinita
5 - 60 min. (incrementi di 1 min.)	30 min.
Impostazione modalità domanda	Impostazione predefinita

Nota

Il parametro "Periodo Domanda" non viene preso in considerazione nel calcolo del valore mediato se l'impostazione "Modalità Domanda" (tipo di intervallo di integrazione) è Sincronizzato Bus (Intervallo di integrazione sincronizzato).

3.3.11 Accuratezza delle misure

Lo sganciatore Energy soddisfa i requisiti della norma CEI 61557- 12 Edizione 1:

- Classe 0,5 per la misura di correnti e tensioni
- Classe 1 per la misura dell'energia attiva

La precisione di ogni misura è definita, in conformità della CEI 61557-12, per un'alimentazione in condizioni normali di temperatura ambiente di 23 °C \pm 2 °C.

Per una misura effettuata a un'altra temperatura, all'interno dell'intervallo di temperatura di - 25 °C...+ 70 °C, il coefficiente di declassamento della precisione in temperatura è dello 0,05% per °C. L'intervallo di precisione è la parte dell'intervallo di misura per la quale si ottiene la precisione definita; la definizione di questo intervallo può essere legata alle caratteristiche di carico dell'interruttore automatico.

Variabili	Simboli usati	Intervallo di misura	Classe CEI 61557-12 o precisione	
Correnti e max/min delle correnti	11, 12, 13; IN, lavg, Imax, Imin,	0,21,2 x In	0,5	
Guasto terra	% IG	0,21,2 x ln	0,5	
Squilibrio di corrente	I1 Unb, I2 Unb, I3 Unb; IN Unb, Max Unb I	-	-	
Tensioni fase-fase e Min/Max	U12, U23, U31, Uavg	120 V - 690 V	0,5	
Tensioni fase-neutro e Min/Max	V1N, V2N, V3N, Vavg	70 V - 440 V	0,5	
Squilibrio	U12 Unb, U23 Unb, U31 Unb, V1N Unb, V2N Unb, V3N Unb, Max Unb U, Max Unb V	0,81,2 x Vn	-	
Frequenza	f	45 Hz - 65 Hz	0,02	
Potenze	P total, P per phase, Q total, Q per phase, S total, S per phase	0,051,2 x ln	1	
Energia attiva	Ealn, EaOut, Ea Abs, Ea, Ealn EaOut	0,051,2 x ln	1	
Energia reattiva	ErIN, ErOut, Er Abs, Er	0,051,2 x In	2	
Energia apparente	Es	0,051,2 x ln	1	
	P Dmd per fase, P Dmd Totale, Q Dmd per fase, Q Dmd Totale, S Dmd per fase, S Dmd Totale			
Potenze medie nell'intervallo	Max P Dmd per fase, Max P Dmd Totale, Max Q Dmd per fase, Max Q Dmd totale, Max S Dmd per fase, Max S Dmd Totale	0,051,2 x ln	1	
Correnti medie nell'intervallo	I1 Dmd, I2 Dmd, I3 Dmd, IN Dmd, Iavg Dmd, Max I1 Dmd, Max I2 Dmd, Max I3 Dmd; Max IN Dmd, Max I3 Dmd, Max I2 Dmd, Max I3 Dmd; Max IN Dmd	0,21,2 x ln	0,5	
Fattori di potenza	PF1, PF2, PF3, PFtot, Cos φ 1, Cos φ 2, Cos φ 3, Cos φ tot	Da 0,5 induttivo a 0,8 capacitivo	1	
THD in tensione	THDU (fase-fase) THDV (fase-neutro)	020%	2	
THD in corrente	THDI per fase	0200%	2	

3.4 Gestione degli allarmi e degli storici

3.4.1 Principio degli allarmi dello sganciatore Energy

Lo sganciatore Energy permette di gestire i seguenti tipi di allarme:

- Preallarme di sovraccarico PTA

- Allarme di sgancio

- Allarme personalizzabile

- Allarme di sistema

Il **preallarme** di sovraccarico del PTA emette un avviso di rischio imminente di scatto a causa di un sovraccarico di corrente. È associato al contatto di uscita PTA.

Gli **allarmi di sgancio** emettono un avviso degli eventi di sgancio e orientano la diagnosi sulla causa dell'intervento.

Gli **allarmi personalizzabili** permettono di monitorare ed essere avvisati delle misure effettuate dallo sganciatore Energy.

Gli allarmi di sistema corrispondono ad eventi predefiniti.

Oltre a questi allarmi, l'allarme del contatto di uscita OAC permette di segnalare uno dei seguenti allarmi: preallarme di sovraccarico PTA, allarmi personalizzabili, allarmi di sistema.

Livello di priorità degli allarmi personalizzabili e di sgancio

Ogni allarme di sgancio e ogni allarme personalizzabile è associato a un livello di priorità:

- Alta priorità
- Priorità media
- Bassa priorità
- Nessuna priorità

Gli allarmi di sgancio e gli allarmi personalizzabili creati sono sempre in funzione, anche se non è stata assegnata alcuna priorità.

Il preallarme di sovraccarico, gli allarmi di sistema e l'allarme del contatto di uscita OAC sono sempre in funzione e hanno il livello di priorità alto.

Segnalazione di allarmi sullo sganciatore Energy

	LED PTA	Messaggio di notifica
Preallarme di sovraccarico PTA	x	-
Allarme di sgancio	-	x
Allarme di sistema	-	x
Allarme di uscita OAC	-	x

Nota

Gli allarmi personalizzabili non sono segnalati sullo sganciatore Energy. L'allarme di sistema "Errore interno sganciatore" è segnalato dal LED "Ready" che lampeggia in arancione (vedi paragrafo 3.4.5).

Segnalazione degli allarmi sul display sporgente

	Memorizzato nello storico	Memorizzato nell'elenco degli allarmi attivi	Messaggio di notifica	LED di allarme
Livello di priorità				
bassa	x	-	-	-
media	x	x	-	x
alta	x	x	x	x

3.4.2 Preallarme di sovraccarico PTA

Il preallarme di sovraccarico PTA è definito da due parametri:

- soglia PTA: soglia espressa in % Ir (può essere regolata dal 60 al 95%)
- temporizzazione PTA: espressa in % tr (può essere regolata dal 5 all'80%)

Si attiva per una corrente di carico quando l'intensità e la durata rientrano in una **zona di avviso di pre-sgancio.**

Zone di preallarme di sovraccarico

Questa **zona di avviso di pre-sgancio** è delimitata da un lato dalla soglia e dalla temporizzazione del preallarme di sovraccarico PTA e, dall'altro, dalla soglia lr e dalla temporizzazione tsd.

La **zona di monitoraggio pre-avviso** parte dalla soglia PTA. Qualsiasi corrente di carico che appare nella zona di monitoraggio viene presa in considerazione sotto forma di un'immagine termica della corrente e cresce all'aumentare del carico dello sganciatore Energy.

Quando si entra nella zona di monitoraggio e il preallarme di sovraccarico PTA è attivo, il LED PTA dello sganciatore si aziona.

L'attivazione del preallarme di sovraccarico provoca anche la chiusura del contatto di uscita PTA.

	Zona di carico normale	Zona di monitoraggio pre-avviso	Zona di avviso di pre-sgancio
РТА	off	Arancione lampeggiante	Arancione permanente
Contatto PTA	aperto	aperto	chiuso

Nota

Questo preallarme e il comportamento descritto sopra sono disponibili anche per gli interruttori automatici LSI e LSIG. Il LED corrispondente su questi interruttori automatici è 90% Ir.

3.4 Gestione degli allarmi e degli storici

3.4.3 Allarmi di sgancio

Gli allarmi d'intervento indicano un evento d'intervento e forniscono informazioni sulla sua causa. Le possibili cause dell'intervento sono:

- intervento della protezione Lungo ritardo
- intervento della protezione Breve ritardo
- Intervento della protezione Istantanea
- Intervento della protezione contro i guasti a terra
- Intervento durante il test (vedi strumento di configurazione HTP610H)

Le seguenti informazioni sono fornite nel caso del messaggio relativo a un allarme d'intervento:

- causa dell'intervento
- fase oggetto del guasto (solo per le cause Lungo ritardo, Breve ritardo e Istantaneo)
- valore della corrente di guasto (solo per le cause Lungo ritardo, Breve ritardo, Istantaneo e Terra)

Ultimo sgancio

Le informazioni relative all'ultimo sgancio vengono sistematicamente memorizzate, indipendentemente dalla priorità associata all'allarme.

Queste informazioni sono accessibili tramite i dispositivi di comunicazione, ma anche nel menu Informazioni del display incorporato.

Allarme di sgancio sul display incorporato

3.4.4 Allarmi personalizzabili

Gli allarmi personalizzabili permettono di monitorare qualsiasi evento di misura rilevato dallo sganciatore Energy.

È possibile definire fino a 12 allarmi per un singolo sganciatore. Ogni allarme è dedicato al monitoraggio di una singola misura.

Un allarme personalizzato è definito dai seguenti parametri:

- misura monitorata
- soglia di attivazione
- soglia di disattivazione
- temporizzazione di attivazione
- temporizzazione di disattivazione
- livello di priorità

Condizione di attivazione degli allarmi personalizzabili

L'attivazione di un allarme personalizzato è frutto di una delle seguenti condizioni:

- superamento positivo di una soglia
- superamento negativo di una soglia
- uguaglianza a un valore di misura

Attivazione per superamento positivo

Nel caso di un superamento positivo di una soglia, l'attivazione dell'allarme dipende dal superamento positivo della soglia di attivazione.

Superamento maggiore

Simbolo usato	Significato
S1	Soglia di attivazione
S2	Soglia di disattivazione
T1	Temporizzazione di attivazione
T2	Temporizzazione di disattivazione

3.4 Gestione degli allarmi e degli storici

3.4.4 Allarmi personalizzabili

Superamento minore

Simbolo	Significato
S1	Soglia di attivazione
S2	Soglia di disattivazione
T1	Temporizzazione di attivazione
T2	Temporizzazione di disattivazione

Attivazione dovuta a livelli uguali

Per la condizione di uguaglianza a un valore, l'allarme viene attivato quando il valore misurato è uguale al valore di attivazione. La soglia di attivazione è la stessa del valore di attivazione.

Superamento dovuto a livelli uguali

Simbolo	Significato
S1	Soglia di attivazione
T1	Temporizzazione di attivazione
T2	Temporizzazione di disattivazione

Gestione delle temporizzazioni

Le temporizzazioni degli allarmi personalizzabili sono gestite da 2 contatori che sono normalmente a 0

Per la temporizzazione di attivazione, il contatore:

- viene incrementato quando la condizione di attivazione è soddisfatta
- viene diminuito se la condizione di attivazione non è soddisfatta e se la temporizzazione non è raggiunta
- viene resettato quando viene raggiunta la temporizzazione

Per la temporizzazione di disattivazione, il contatore:

- viene incrementato quando la condizione di disattivazione è soddisfatta
- viene diminuito se la condizione di disattivazione non è più soddisfatta e se la temporizzazione non è raggiunta
- viene resettato quando viene raggiunta la temporizzazione

Una volta raggiunta la temporizzazione di attivazione, l'allarme viene attivato. Quando un allarme viene riconfigurato, anche i contatori vengono azzerati.

Esempio:

In questo esempio, l'allarme è impostato su un superamento positivo della soglia di attivazione di 280 V quando si misura la tensione V1N.

La temporizzazione di attivazione è impostata su 4 secondi.

La soglia di disattivazione è impostata a 250 V e la temporizzazione di disattivazione a 2 secondi.

Allarmi personalizzabili: temporizzazioni

Simbolo	Significato
S1	Soglia di attivazione
S2	Soglia di disattivazione
T1	Temporizzazione di attivazione
T2	Temporizzazione di disattivazione

3.4 Gestione degli allarmi e degli storici

3.4.5 Allarmi di sistema

Esistono tre allarmi di sistema: - errore interno sganciatore - allarme temperatura sganciatore

- rottura del polo del neutro

Corrispondono a eventi predefiniti:

Errore interno sganciatore

Lo sganciatore Energy controlla costantemente la propria funzione di protezione. In caso di un errore di funzionamento dell'elettronica dello sganciatore, l'allarme di **errore interno sganciatore** si attiva e il LED di stato dell'interruttore automatico lampeggia in arancione.

Allarme temperatura sganciatore

Lo sganciatore Energy controlla costantemente la propria temperatura interna. Quando la temperatura supera i 105°C, l'allarme di **temperatura dello sganciatore** si attiva e un messaggio di notifica appare sul pannello display incorporato e sul pannello display sporgente. L'allarme rimane attivo finché la temperatura interna dello sganciatore rimane al di sopra della soglia di 100°C.

Rottura del polo del neutro

Disponibile solo sulle versioni Energy 4P.

Questo allarme viene attivato se viene rilevata una rottura del polo del neutro su un interruttore Energy 4P e se questo allarme è stato assegnato al contatto di uscita OAC. La rottura di un polo del neutro produce un aumento del potenziale di tensione tra i poli di fase e il polo del neutro. Questo rilevamento si basa sul monitoraggio di una sovratensione di circa 275 V AC, una soglia di intervento e una temporizzazione. Questi parametri sono definiti dalla norma EN 50550 per una tensione nominale tra fase e neutro di 230 V.

Questi allarmi sono identificati da LED o messaggi di notifica a seconda della versione dello sganciatore e del display utilizzato:

	LSIG LSI LSnl	Energy	Pannello display
Errore interno sganciatore	Notifica arancione lan	npeggiante	Notifica "Errore interruttore automatico"
Allarme temperatura sganciatore	(solo LSI LSIG)	Notifica	Notifica "T °C superata"
Rottura del polo del neutro	-	(((▲))) DAC	Notifica "Rottura del polo N"

Nota

Questi allarmi di sistema possono essere assegnati al contatto di uscita OAC. In questo caso, il messaggio di notifica OAC sarà aggiunto ad altri messaggi di notifica sui rispettivi display.

3.4.6 Configurazione degli allarmi

Configurazione del preallarme di sovraccarico PTA

La soglia di scatto e la temporizzazione del preallarme di sovraccarico del PTA possono essere regolati. I parametri sono definiti in relazione ai parametri Lungo ritardo Ir e tr.

Soglia PTA (% Ir)	Soglia di preallarme PTA
Temporizzazione PTA (% tr)	Temporizzazione di preallarme PTA

Impostazione preallarme PTA

Impostazione preallarme PTA		Impostazione predefinita
Soglia PTA (% Ir)	Da 60 a 95 (incrementi del 5%)	90
Temporizzazione PTA (% tr)	Da 5 a 80 (incrementi del 5%)	50

Configurare il contatto di uscita OAC

Il contatto di uscita OAC è impostabile con due parametri:

- Allocazione dell'allarme
- Comportamento del contatto

Impostazione dell'uscita OAC		Impostazione predefinita
Allocazione dell'allarme Vedere l'elenco		Preallarme di sovraccarico PTA
Comportamento del contatto	Automatico - Manuale	Automatico

Elenco di allarmi disponibili che possono essere assegnati al contatto di uscita OAC:

Allarmi disponibili

Preallarme di sovraccar	ico PTA
Allarme personalizzato	1
Allarme personalizzato	2
Allarme personalizzato	3
Allarme personalizzato	4
Allarme personalizzato	5
Allarme personalizzato	6
Allarme personalizzato	7
Allarme personalizzato	8
Allarme personalizzato	9
Allarme personalizzato	10
Allarme personalizzato	11
Allarme personalizzato	12
Errore interno sganciato	re
Allarme temperatura sg	anciatore
Rottura del polo del neu	itro
Neeguno	

Nessuno

Comportamento del contatto

In modalità automatica, il contatto OAC si aprirà automaticamente 500 ms dopo la scomparsa dell'allarme.

In modalità manuale, il contatto OAC rimane attivo dopo la scomparsa del guasto fino a quando l'allarme non viene cancellato tramite il display incorporato.

Nota

Per assegnare il contatto OAC al preallarme di sovraccarico PTA, il contatto è forzato in modalità automatica e il contatto si apre quando l'allarme scompare.

3.4 Gestione degli allarmi e degli storici

3.4.6 Configurazione degli allarmi

Configurazione degli allarmi di sgancio

Gli allarmi di intervento possono essere configurati dal pannello display HTD210H, dallo strumento di configurazione HTP610H e utilizzando la connessione Modbus tramite un modulo di comunicazione HTC3x0H. L'isteresi di attivazione e disattivazione dell'allarme di sgancio è fissa e non può essere regolata. È necessaria solo l'impostazione del livello di priorità.

Impostazione degli allarmi d	Impostazione predefinita	
Livello di priorità	Nessuna - bassa - media - alta	Alta

Nota

Gli allarmi di sgancio sono segnalati da un messaggio di notifica sul display incorporato dello sganciatore Energy, indipendentemente dall'impostazione del livello di priorità.

Configurazione degli allarmi personalizzati

Gli allarmi personalizzati possono essere configurati dal display incorporato e dallo strumento di configurazione HTP610H. Per tutti gli allarmi, le temporizzazioni di attivazione e disattivazione possono essere impostate tra 1 e 3000 secondi, con incrementi di un secondo.

Misura monitorata	Possibili condizioni di attivazione	Intervalli di soglia di attivazione/ disattivazione	Versione 3P	Versione 4P
Correnti				
Correnti I1, I2, I3, lavg	> <	Da 0,2 x ln a 10 x ln (incrementi di 0,1 A)	x	x
Corrente Imax	>	Da 0,2 x In a 10 x In (incrementi di 0,1 A)	х	x
Corrente IN	> <	Da 0,2 x In a 10 x In (incrementi di 0,1 A)	-	x
Corrente IG	>	Da 10% x lg a 100% x lg (incrementi dell'1%)	x	x
Squilibri di corrente	>	dal 5% al 60%, (incrementi dello 0,1%)	x	x
Tensioni				
Tensioni V1, V2N, V3N, Vavg	> <	da 80 V a 800 V (incrementi di 1 V)	-	x
Tensione Vmax	>	da 80 V a 800 V (incrementi di 1 V)	-	x
Tensione Vmin	<	da 80 V a 800 V (incrementi di 1 V)	-	x
Squilibri di tensione fra fase e neutro	>	dal 2% al 30% (incrementi dello 0,1%)	-	x
Tensioni U12, U23, U31	> <	da 80 V a 800 V (incrementi di 1 V)	x	x
Tensione Umax	>	da 80 V a 800 V (incrementi di 1 V)	x	x
Tensione Umin	<	da 80 V a 800 V (incrementi di 1 V)	x	x
Squilibri di tensione fra le fasi	>	dal 2% al 30% (incrementi dello 0,1%)	x	x

Misura monitorata	Possibili condizioni di attivazione	Intervalli di soglia di attivazione/ disattivazione	Versione 3P	Versione 4P
Potenze				
Potenza attiva assorbita per fase	> <	da 1 kW a 1000 kW (incrementi di 0,1 kW)	-	x
Potenza attiva totale assorbita	> <	da 1 kW a 3000 kW (incrementi di 0,1 kW)	x	x
Potenza attiva generata per fase	> <	da 1 kW a 1000 kW (incrementi di 0,1 kW)	-	x
Potenza attiva totale P	> <	da 1 kW a 3000 kW (incrementi di 0,1 kW)	x	x
Potenza reattiva assorbita per fase Q1, Q2, Q3	> <	da 1 kvar a 1000 kvar (incrementi di 0,1 kvar)	-	x
Potenza reattiva totale assorbita Q	> <	da 1 kvar a 3000 kvar (incrementi di 0,1 kvar)	x	x
Ritorno di potenza reattiva per fase Q1, Q2, Q3	> <	da 1 kvar a 1000 kvar (incrementi di 0,1 kvar)	-	x
Ritorno di potenza reattiva totale Q	> <	da 1 kvar a 3000 kvar (incrementi di 0,1 kvar)	x	x
Potenza apparente per fase S1, S2, S3	> <	da 1 KVA a 1000 kvar (incrementi di 0,1 KVA)	-	x
Potenza apparente totale S	> <	da 1 KVA a 3000 kvar (incrementi di 0,1 KVA)	x	x
Fattore di potenza capacitivo per fase	<	da 0 a 0,99 (incrementi di 0,01)	-	x
Fattore di potenza capacitivo totale	<	da 0 a 0,99 (incrementi di 0,01)	x	x
Fattore di potenza induttivo per fase	<	da 0 a 0,99 (incrementi di 0,01)	-	x
Fattore di potenza induttivo totale	<	da 0 a 0,99 (incrementi di 0,01)	x	x

Cos φ

$\cos \phi$ capacitivo per fase	<	da 0 a 0,99 (incrementi di 0,01)	-	x
Cos ϕ capacitivo totale	<	da 0 a 0,99 (incrementi di 0,01)	x	x
Cos ϕ induttivo per fase	<	da 0 a 0,99 (incrementi di 0,01)	-	x
$\cos \phi$ induttivo totale	<	da 0 a 0,99 (incrementi di 0,01)	x	x

Livello di distorsione

Distorsione armonica totale della corrente per fase THDI1, THDI2, THDI3	>	dal 0% al 1000% (incrementi dello 0,1%)	x	x
Distorsione armonica totale delle tensioni fase-neutro THDV1N, THDV2N, THDV3N	>	dal 0% al 1000% (incrementi dello 0,1%)	-	x
Distorsione armonica totale delle tensioni fase-fase THDU12, THDU23, THDU31	>	dal 0% al 1000% (incrementi dello 0,1%)	x	x

3.4 Gestione degli allarmi e degli storici

3.4.6 Configurazione degli allarmi

Misura monitorata	Possibili condizioni di attivazione	Intervalli di soglia di attivazione/ disattivazione	Versione 3P	Versione 4P
Correnti medie nell'intervallo				
I1 Dmd, I2 Dmd, I3 Dmd, Iavg Dmd	> <	da 0,2xIn a 10xIn (incrementi di 0,1 A)	x	x
Corrente richiesta IN Dmd	> <	da 0,2xIn a 10xIn (incrementi di 0,1 A)	-	x
Potenze mediate nell'inte	rvallo			
Potenza attiva totale P Dmd	> <	da 1 kW a 3000 kW (incrementi di 0,1 kW)	x	x
Potenza reattiva totale Q Dmd	> <	da 1 kvar a 3000 kvar (incrementi di 0,1 kvar)	x	x
Potenza apparente totale S Dmd	> <	da 1 KVA a 3000 kvar (incrementi di 0,1 KVA)	x	x
Frequenza				
Frequenza	> <	da 45 Hz a 65 Hz (incrementi di 0,01 Hz)	x	x
Quadrante				
Quadrante operativo 1	=	-	x	x
Quadrante operativo 2	=	-	x	х
Quadrante operativo 3	=	-	x	х
Quadrante operativo 4	=	-	x	x
Campo				
Campo rotante diretto	=	-	х	х
Campo rotante indiretto	=	-	x	x
Circuito				
Circuito capacitivo	=	-	x	x
Circuito induttivo	=	-	х	х

3.4.7 Storico degli allarmi

Lo sganciatore Energy ha una memoria interna che permette di memorizzare i seguenti storici:

- Storico degli allarmi di sgancio (fino a 10 eventi)
- Storico degli allarmi personalizzati (fino a 40 eventi)
- Storico delle modifiche alle impostazioni di protezione dello sganciatore (fino a 5 eventi per parametro di protezione)

Questi storici vengono aggiornati dopo ogni evento.

Storico degli allarmi di sgancio

Ogni evento di sgancio viene salvato con le seguenti informazioni:

- causa dell'intervento
- fase oggetto del guasto (solo per le cause Lungo ritardo, Breve ritardo e Istantaneo)
- valore della corrente di guasto (solo per le cause Lungo ritardo, Breve ritardo, Istantaneo e Terra)
- Tempo utente
- Tempo macchina

Storico degli allarmi personalizzati

Ogni evento di allarme personalizzato viene salvato con le seguenti informazioni:

- Descrizione
- Tempo utente
- Tempo macchina
- Apparizione/scomparsa dell'allarme

Storico delle impostazioni di protezione

Ogni modifica a una delle impostazioni di protezione viene salvata nello storico:

- Ir
- tr
- Attivazione Breve ritardo
- Isd
- tsd
- l²t su tsd
- Breve ritardo ZSI (solo su Energy P250)
- li
- Attivazione protezione di terra
- Ig
- tg
- l²t su guasto a terra
- Guasto a terra ZSI (solo su Energy P250)
- Neutro attivato/disattivato (solo sulla versione 4P)
- Coefficiente di regolazione del neutro (solo sulla versione 4P)

Ogni modifica di un'impostazione di protezione viene salvata con le seguenti informazioni:

- Impostazione precedente
- Tempo utente
- Tempo macchina

Per ogni impostazione, si possono salvare fino a 5 modifiche separatamente. Quando un'impostazione viene modificata, il valore precedente viene salvato come pure il tempo utente e il tempo macchina.

Questi storici sono accessibili dalla comunicazione modbus, dal pannello display o con lo strumento di configurazione HTP610H. Lo strumento di configurazione permette di cancellare l'allarme di sgancio e gli storici degli allarmi personalizzati:

- Per intero
- Solo alta priorità
- Solo priorità media
- Solo bassa priorità

Tempo macchina

Il tempo macchina conteggia il tempo totale di esercizio dello sganciatore. È fornito in tempo assoluto e non può essere regolato.

Il tempo macchina aumenta quando lo sganciatore è in servizio. L'aumento viene interrotto quando lo sganciatore non è più alimentato. Si sconsiglia di utilizzare il tempo macchina come orologio atto a cronometrare gli eventi di allarme.

Tempo utente

Il tempo utente può essere regolato manualmente (tramite il display incorporato o il pannello display) o sincronizzandolo con un orologio di riferimento dallo strumento di configurazione o tramite un comando Modbus. È indicato con data, ore, minuti e secondi. Proprio come il tempo macchina, il contatore incrementa quando lo sganciatore è alimentato correttamente.

Per impostazione predefinita, la data è impostata al 1° gennaio 2000, e viene resettata quando lo sganciatore non è più alimentato (nessuna autoalimentazione né alimentazione esterna).

Nota

Si raccomanda di usare un'alimentazione esterna in modo che il tempo utente sia costante, o di garantire che, quando si utilizza un bus di comunicazione, il sistema di monitoraggio esegua un'altra sincronizzazione ad ogni avvio. Se si utilizza l'interruttore automatico Energy senza bus di comunicazione o senza alimentazione esterna, il tempo macchina può ancora salvare la cronologia degli eventi che appaiono nello storico.

4 Avvio, messa in servizio, utilizzo

4.1 Connettori e accessori

4.1.1 Connettori

L'interruttore automatico Energy è dotato di connettori specifici per collegare dispositivi di comunicazione e accessori.

Connettore PTA: Permette di collegare il contatto di uscita PTA per inviare il preallarme di sovraccarico su un circuito di segnalazione locale.

Connettore OAC: La porta OAC è un contatto di uscita che permette di inviare l'allarme opzionale su un circuito di segnalazione locale.

Connettore MIP: Permette di connettere temporaneamente lo strumento di configurazione HTP610H.

Connettore CIP: Queste due porte sono utilizzate per connettere il pannello display HTD210H, un'alimentazione esterna a 24 V DC o, a scelta, il modulo di comunicazione.

Connettore ACP: Permette di connettere l'ausiliario Energy AX/AL.

Connettore ZSI1: Presente solo sulle versioni P250, permette di collegare gli interruttori a valle per implementare la selettività di zona (ZSI).

Connettore ZSI2: Presente solo sulle versioni P160 e P250, permette di collegare l'interruttore a monte per implementare la selettività di zona (ZSI).

	LSnI	LSI	LSIG	Energy
РТА	-	x	x	x
OAC	-	-	-	x
MIP	x	x	x	x
CIP	-	-	-	x
ACP	-	-	-	x
ZSI1	-	-	-	solo P250
ZSI2	-	-	-	x

Disponibilità di connettori secondo la versione di sganciatore elettronico:

Posizione dei connettori

Versione interruttore automatico Energy P160

Connettori sganciatore Energy P160

Versione interruttore automatico Energy P250

Connettori sganciatore Energy P250

Posizione del connettore PTA

Connettore PTA

4.1.2 Accessori di collegamento

Gli accessori di collegamento sono disponibili come opzione. Si tratta di adattatori precablati che sono disponibili in varie lunghezze a seconda delle esigenze.

Connettore	Riferimento accessori	Lunghezza
PTA o OAC	HTC130H: Adattatore OAC/PTA	1,20 m
MIP	Incluso nello strumento HTP610H	-
	HTC330H: Adattatore CIP	0,50 m
	HTC340H: Adattatore CIP	1,50 m
	HTC350H: Adattatore CIP	3 m
CIP	HTC360H: Adattatore CIP	5 m
	HTC370H: Adattatore CIP	10 m
	HTC140H: Adattatore CIP - 24 V	1,20 m
ACP	HXS120H: AX/AL Energy (I contatti AX e AL non possono essere collegati)	-
	HXS121H: AX/AL Energy 230 VAC	-
	HXS122H: AX/AL Energy 125 VAC / 30 VDC	-
ZSI1 o ZSI2	HTC150 H: Adattatore ZSI	1,20 m

Identificazione dei fili degli adattatori HTC130H, HTC140H, HTC150H e degli ausiliari HXS12xH

	Numero fili di uscita	Identificazione dei fili	
HTC130H HTC140H	2 fili	polarità + : Marrone polarità - : Bianco	
HXS121H HXS122H	6 fili	Contatto AX Comune: bianco NO: nero NF: rosso	Contatto AL Comune: bianco NO: nero NF: rosso
HTC150H	3 fili	Comune: marrone Segnale Breve ritardo: bianco Segnale di guasto a terra: Verde	

4.2 Avvio e configurazione dell'interruttore automatico

4.2.1 Precauzioni per l'uso prima di iniziare

A PERICOLO

Pericolo di gravi lesioni o pericolo di morte.

Assicurarsi che l'arrivo della rete di alimentazione a monte dell'interruttore automatico sia sezionato e isolato prima di collegare gli accessori e i dispositivi del sistema di comunicazione.

Rispettare le raccomandazioni e le istruzioni per l'installazione dell'interruttore automatico Energy. A tal scopo consultare la documentazione tecnica della gamma di interruttori automatici h3+ e il manuale di installazione fornito con l'interruttore automatico.

Scelta dell'alimentazione esterna 24 V DC

Un'alimentazione esterna di 24 V DC è necessaria per alimentare gli accessori di comunicazione e per garantire che le funzioni di misura, di allarme e di configurazione dello sganciatore Energy funzionino sempre correttamente. Si raccomanda di usare un'alimentazione 24 V DC SELV (bassissima tensione di sicurezza).

Questa alimentazione esterna deve essere sufficientemente dimensionata per soddisfare i fabbisogni degli accessori collegati.

Consumo dei vari accessori

Sganciatore Energy:	60 mA
Pannello display HTD210H	85 mA
Modulo di comunicazione HTC310H/HTC320H	40 mA

L'alimentazione a 24 V di HTG911H soddisfa pienamente queste esigenze in quanto è del tipo SELV e fornisce una corrente di uscita fino a 2,5 A.

Nota

Inoltre, si raccomanda di utilizzare un'alimentazione sicura a 24 V DC per garantire la completa continuità del servizio e il corretto esercizio anche in caso di guasto della rete di distribuzione.

Promemoria:

Condizioni minime per le quali le funzioni di misura, allarme e configurazione sono disponibili senza un'alimentazione esterna:

- interruttore automatico chiuso
- corrente minima attraverso l'interruttore

sotto è riportata una tabella per corrente nominale

Corrente nominale	alimentato 1 polo	alimentato 2 poli	alimentato 3 poli
40 A	NA	>14 A	>10 A
100 A	>25 A	>15 A	>15 A
160 A	>32 A	>16 A	>16 A
250 A	>50 A	>25 A	>25 A

Collegamento dell'alimentazione esterna 24 V DC

L'alimentazione esterna 24 V DC è collegata all'interruttore in due modi:

- Collegamento diretto con l'adattatore HTC140H CIP-24V
- Collegamento via modulo di comunicazione

Ecco la procedura da seguire per collegare l'alimentazione direttamente al connettore CIP:

	Azione	Nota
1	Commutare l'interruttore automatico Energy collegato in posizione "OFF" o sganciata	
2	Aprire il coperchio anteriore dell'interruttore automatico	Il coperchio anteriore dell'interruttore automatico può essere aperto solo in posizione "OFF" o "sganciato"
3	Inserire il connettore CIP dell'adattatore HTC140H in uno dei connettori contrassegnati CIP all'interno dell'interruttore automatico sul lato sinistro	 Rischio di danneggiare il connettore CIP Rispettare la direzione di inserimento del connettore: la parte dell'adattatore contrassegnata CIP deve essere visibile dal fronte Evitare di forzare il connettore durante l'inserimento
4	Fare passare il cavo dell'adattatore HTC140H lungo l'apposita canalina di sinistra dell'interruttore automatico	È consigliabile prevedere una morsettiera di collegamento a 24 V vicino all'interruttore automatico per collegare i fili + e - dell'adattatore HTC140H. Il cablaggio del circuito 24 V DC può essere prolungato da questa morsettiera fino ai terminali di alimentazione 24 V DC. Filo + : Colore marrone
	Se necessario, utilizzare il supporto laterale fornito con l'interruttore automatico per collegare il cavo alla parete laterale (vedi illustrazione sotto)	 Filo - : Colore bianco Rispettare le regole di cablaggio in vigore nei quadri di distribuzione: Separare il percorso dei cavi di alimentazione da quello dei cavi di segnale di bassa ampiezza Fissare il cavo lungo il percorso
5	Aprire il coperchio frontale dell'interruttore automatico per immobilizzare il supporto laterale nonché la canalizzazione laterale	

Passaggio del cavo HTC140H con il supporto laterale

Cavi CIP e supporto laterale

4.2 Avvio e configurazione dell'interruttore automatico

4.2.2 Primo avvio dello sganciatore Energy

Al primo avvio, prima di poter accedere ai vari menu, il display incorporato chiederà all'utente di impostare l'orientamento, la luminosità e la modalità Standby. Queste impostazioni possono essere confermate usando il joystick sul lato sinistro del display.

Una volta selezionata l'impostazione corretta, premere il joystick per confermare l'impostazione e passare alla schermata successiva.

	Azione	Nota/Illustrazione
1	Orientamento del display	
	 A Spingere il joystick verso l'alto o verso il basso per selezionare l'orientamento del display B Premere il joystick per confermare la scelta 	
2	Impostazione della Iuminosità dello schermo	
	A Spingere il joystick verso l'alto o verso il basso per selezionare la luminosità	
	B Premere il joystick per confermare la scelta	
3	Attivare/disattivare la modalità standby	
	 A Spingere il joystick verso l'alto o verso il basso per attivare/ disattivare la modalità standby B Premere il joystick per confermare la scelta 	
4	Navigazione tra i menu principali	

Dopo aver confermato queste tre impostazioni, viene visualizzato il Menu principale.
4.2.3 Impostazione del setpoint Ir max e della corrente Ir dello sganciatore Energy

Dopo aver impostato il display, è necessario impostare il setpoint Ir max e la corrente Ir. Procedere come segue.

	Azione	Nota/Illustrazione
1	Aprire la copertura trasparente per accedere al selettore di regolazione Ir max	
2	Muovere il selettore di regolazione di lr max con un cacciavite a croce di dimensione PH1, PH2 o PZ2 Posizionare il selettore di regolazione sul valore massimo desiderato di lr	Nota Il display passa automaticamente alla modalità sbloccata e chiede di modificare il valore Ir. Il valore Ir viene quindi visualizzato a colori invertiti e la coppia icona e valore viene visualizzata con uno sfondo dal colore invertito
3	Muovere il joystick di navi- gazione verso il basso per microregolare il valore Ir	
4	Premere il centro del joystick per confermare il nuovo valore	DE 120A BOK T 100 Ready 100 Ready 100 Ready 100 Ready 100 Ready 100 Ready

4.2 Avvio e configurazione dell'interruttore automatico

4.2.3 Impostazione del setpoint Ir max e della corrente Ir dello sganciatore Energy

	Azione	Nota/Illustrazione
5	A questo punto è possibile modificare le altre impostazioni di protezione. A tal scopo, è importante rimanere in modalità Sbloccata	Nota
		Verificare che l'icona dei parametri di impostazione a sinistra del valore di regolazione rimanga visualizzata nel colore invertito sull'intera superficie
6	Muovere il joystick di navigazione verso l'alto o verso il basso per selezionare un altro parametro di impostazione	
7	Premete il centro del joystick per confermare la selezione e il display chiederà immediata- mente di cambiare il valore selezionato	
8	Muovere il joystick di navigazione verso l'alto o verso il basso per eseguire l'impostazione	

	Azione	Nota/Illustrazione
9	Premere il centro del joystick per confermare il nuovo valore	
10	Ripetere i passi da 5 a 9 per eseguire ulteriori impostazioni di protezione	
11	Muovere il joystick a sinistra per uscire dalla modalità Sbloccata e ritornare al menu Principale	

Nota

Questa procedura permette di cambiare le impostazioni di protezione solo per lo sganciatore. Altre modifiche alle impostazioni, come il ripristino dei valori massimi di misura, il ritorno alle configurazioni di fabbrica o l'autorizzazione alla scrittura dei dati, possono essere eseguite tramite il pulsante di sblocco.

Se non c'è alcun movimento sul joystick di navigazione per più di 30 secondi, la Modalità bloccata si attiva di nuovo automaticamente.

4.2 Avvio e configurazione dell'interruttore automatico

4.2.4 Configurazione tramite il pulsante di sblocco

Dopo aver impostato il setpoint lr max, è necessario:

- Impostare gli altri parametri di protezione dell'interruttore automatico
- Impostare l'orologio dello sganciatore
- Possibilmente bloccare la configurazione dell'interruttore automatico

Procedere come segue:

	Azione	Nota/Illustrazione
1	Aprire la copertura trasparente per accedere al pulsante di sblocco	
2	Muovere il joystick a sinistra o a destra per selezionare il menu (Protezione o Configurazione) che contiene il parametro da impostare	
3	Premere il centro del joystick per accedere al menu	
4	Muovere il joystick verso l'alto verso il basso per selezionare il parametro da impostare	
5	Premere brevemente il pulsante di sblocco usando una punta arrotondata come una penna a sfera	Nota Il display incorporato passa automaticamente alla modalità Sbloccata. L'icona del parametro che si trova a sinistra del valore da impostare viene quindi visualizzata a colori invertiti

	Azione	Nota/Illustrazione
6	Muovere il joystick di navigazione verso l'alto o verso il basso per selezionare il valore o il metodo desiderato	
7	Premere il centro del joystick per confermare la nuova impostazione	
8	A questo punto è possibile modificare altre impostazioni del menu corrente. A tal scopo, è importante rimanere in modalità Sbloccata	Nota Verificare che l'icona dei parametri di impostazione a sinistra del valore di regolazione rimanga visualizzata nel colore invertito sull'intera superficie
9	Muovere il joystick di navigazione verso l'alto o verso il basso per selezionare un altro parametro di impostazione	
10	Premere il centro del joystick o muoverlo verso destra per invertire il colore dello sfondo dell'insieme icona e valore. Il display chiederà allora di modificare il valore o il metodo selezionato	
11	Ripetere i passi 6 e 7	
12	Muovere il joystick a sinistra per uscire dalla modalità Sbloccata e ritornare al menu Principale	

Nota

Se non c'è alcun movimento sul joystick di navigazione per più di 30 secondi, la Modalità bloccata si attiva di nuovo automaticamente.

4.2 Avvio e configurazione dell'interruttore automatico

4.2.4 Configurazione tramite il pulsante di sblocco

Informazioni sull'impostazione dell'autorizzazione alla scrittura dei dati Per approvare o vietare a dispositivi esterni di modificare i parametri interni dello sganciatore (protezione, misura, configurazione, ecc.), è possibile impostare l'autorizzazione alla scrittura dei dati.

L'impostazione viene eseguita tramite il menu di **Configurazione** del display incorporato:

Autorizzazione alla scrittura dei dati

Impostazione dell'autorizzazione alla scrittura dei dati	Impostazione predefinita
ON - OFF	ON

Nota

Il valore "ON" significa che l'autorizzazione alla scrittura dei dati è attivata per i dispositivi remoti. Il valore "OFF" significa che la scrittura non è autorizzata. Seguire la procedura all'inizio del paragrafo per eseguire questa impostazione.

4.2.5 Configurazione della Modalità Scorrimento

La Modalità scorrimento è disattivata per impostazione predefinita.

Per gestire i preferiti, procedere come segue:

	Azione	Nota/Illustrazione
1	Muovere il joystick a destra per selezionare il menu Misure. Poi premere il joystick per accedere al menu Misure	
2	Muovere il joystick di navigazione verso il basso per selezionare la videata da impostare come preferita	I 82A I
3	Premere brevemente il centro del joystick per confermare la scelta. Un asterisco appare sulla icona delle misure a conferma della convalida	1 82A 2 63A 100 100 100 100 100 100 100 10
4	Ripetere i passi 2 e 3 per aggiungere altri preferiti	
5	Premere brevemente il centro del joystick su una videata confermata come preferita per rimuoverla dai preferiti. L'asterisco scompare sulla icona delle misure a conferma della convalida	I B2A 1 B2A 1 B2A 1 B2A 100 125 PA 100 100 PA 100 PA
6	Muovere il joystick verso sinistra ritornare al Menu principale	

Nota

La Modalità scorrimento si avvia automaticamente dopo 30 secondi di inattività.

4.3 Connessione del modulo di comunicazione

4.3.1 Connessione del modulo di comunicazione all'interruttore automatico

Il modulo di comunicazione è collegato all'interruttore automatico Energy tramite l'adattatore CIP. Il cavo adattatore CIP è composto da un connettore

Collegamento del modulo di comunicazione

Ecco la procedura da seguire per collegare il modulo di comunicazione:

	Azione	Nota/Illustrazione
1	Commutare l'interruttore automatico Energy collegato in posizione "OFF" o sganciata	
2	Aprire il coperchio anteriore dell'interruttore automatico	Il coperchio anteriore dell'interruttore automatico può essere aperto solo in posizione "OFF" o "sganciata"
3	Inserire il connettore CIP dell'adattatore CIP in uno dei connettori contrassegnati CIP all'interno dell'interruttore automatico sul lato sinistro	Rischio di danneggiare il connettore CIP. Rispettare le istruzioni di inserimento del connettore: la parte dell'adattatore contrassegnata CIP deve essere visibile dal fronte. Evitare di forzare il connettore durante l'inserimento
4	 Fare passare il cavo dell'adattatore CIP lungo l'apposita canalina di sinistra dell'interruttore automatico Se necessario, utilizzare il supporto laterale fornito con l'interruttore automatico per collegare il cavo alla parete laterale (vedi illustrazione di seguito) 	 Rispettare le regole di cablaggio in vigore nei quadri di distribuzione: Separare il percorso dei cavi di alimentazione da quello dei cavi con segnale di bassa ampiezza Fissare il cavo lungo il percorso.

	Azione	Nota/Illustrazione	
5	Assicurare il supporto laterale al modulo di comunicazione.	Il modulo di comunicazione può essere montato su una guida DIN o direttamente sul fianco dell'interruttore automatico utilizzando il supporto laterale	
	Poi farli scorrere lungo la canalina dei cavi del lato sinistro dell'interruttore automatico		
	Inserire il connettore RJ9 per l'adattatore nell'apposito connettore nella parte superiore del modulo di comunicazione		
6	Inserire il connettore RJ9 dell'adattatore nell'apposito connettore nella parte superiore del modulo di comunicazione		

Passaggio del cavo dell'adattatore CIP a mezzo del supporto laterale

Cavi CIP e supporto laterale

Modulo di comunicazione su supporto laterale

Il supporto laterale h3+ può anche permettere di guidare i cavi dall'interno dell'interruttore automatico Energy come gli adattatori CIP o il cavo OAC.

4.3 Connessione del modulo di comunicazione

4.3.2 Connessione dell'alimentazione del modulo di comunicazione

L'alimentazione esterna a 24 V DC viene collegata dall'alto del modulo di comunicazione al terminale 24 V (+ / -).

Morsetti di collegamento HTC320H

Sezione del terminale 24 V (+ / -): da 0,5 a 1,5 mm².

4.3.3 Connessione degli ingressi/delle uscite

I contatti di ingresso del modulo di comunicazione HTC320H vengono collegati dall'alto del modulo a livello della morsettiera INPUTS.

I contatti di uscita del modulo di comunicazione HTC320H vengono collegati dal basso del modulo alla morsettiera OUTPUTS.

Ingressi e uscite dell'HTC320H

Sezione dei terminali: da 0,5 a 1,5 mm².

Nota

Le 2 uscite possono essere utilizzate per controllare l'accessorio di controllo motorizzato. Un controllo remoto ON/OFF può quindi essere creato tramite la comunicazione Modbus.

4.4 Montaggio e collegamento dell'ausiliario Energy AX/AL

A PERICOLO

Rischio di contatto elettrico

Gli ausiliari standard HXA02xA non sono raccomandati per l'uso con l'interruttore automatico Energy.

L'installazione di questi ausiliari in un interruttore automatico Energy può provocare guasti elettrici di cortocircuito tra i propri terminali e i connettori CIP dell'interruttore automatico.

Il metodo di montaggio dell'ausiliario AX/AL Energy è descritto nel manuale di installazione fornito con l'accessorio.

Questa è la procedura da seguire:

	Azione	Nota/Illustrazione
1	Commutare l'interruttore automatico Energy nella posizione "sganciata"	-
2	Aprire il coperchio anteriore dell'interruttore automatico	Il coperchio anteriore dell'interruttore automatico può essere aperto solo in posizione "OFF" o "sganciata".
3	Posizionare l'ausiliario AX/ AL Energy nell'apposita posizione marcata AX e AL all'interno dell'interruttore automatico sul lato sinistro	Utilizzare la posizione più vicina della leva dell'interruttore automatico. Vedere l'illustrazione di seguito come esempio di installazione di un interruttore automatico P250.
4	Fissare l'ausiliario in posizione, confermato da un clic udibile	-
5	Inserire l'adattatore contrassegnato ACP sull'ausiliario nel connettore contrassegnato ACP all'interno dell'interruttore automatico sul lato sinistro	Rischio di danneggiare il connettore ACP. Rispettare le istruzioni di inserimento del connettore: la parte dell'adattatore contrassegnata ACP deve essere visibile dal fronte. Evitare di forzare il connettore durante l'inserimento.
6	Nel caso dell'ausiliario HXS121H o HXS122H: fare passare i cavi precablati lungo l'apposita canalina di sinistra dell'interruttore automatico. Se necessario, utilizzare il supporto laterale fornito con l'interruttore automatico per collegare il cavo alla parete laterale (vedi illustrazione di seguito)	 È consigliabile prevedere una morsettiera di collegamento nei pressi dell'interruttore automatico per collegare i fili dei contatti AX e XL. Rispettare le regole di cablaggio in vigore nei quadri di distribuzione: Separare il percorso dei cavi di alimentazione da quello dei cavi con segnale di bassa ampiezza Fissare il cavo lungo il percorso.
7	Aprire il coperchio frontale dell'interruttore automatico per immobilizzare il supporto laterale nonché la canalizzazione laterale	

4.4 Montaggio e collegamento dell'ausiliario Energy AX/AL

Collegamento P160 AX/AL Energy

Connettori sganciatore Energy P160

Collegamento P250 AX/AL Energy

4.5 Collegamento dei contatti di uscita PTA e OAC

4.5.1 Collegamento del contatto PTA

Il contatto di uscita PTA è collegato utilizzando l'adattatore HTC130H disponibile in opzione e compatibile con gli interruttori automatici LSI, LSIG e Energy.

Cablaggio PTA

Ecco la procedura da seguire per collegare il contatto PTA:

	Azione	Nota/Illustrazione
1	Rimuovere l'adesivo trasparente che copre il connettore PTA	Il connettore PTA si trova sul lato destro dell'interruttore automatico
2	Inserire la parte dell'adattatore HTC130H contrassegnata PTA nel connettore PTA	Rischio di danneggiare il connettore PTA. Rispettare le istruzioni di inserimento del connettore: la parte dell'adattatore contrassegnata PTA deve essere rivolta verso il basso e il cavo dell'adattatore deve essere rivolto verso il retro dell'interruttore automatico. Evitare di forzare il connettore durante l'inserimento
3	Far passare il cavo dell'adattatore PTA in direzione del retro dell'interruttore. Fissare il cavo all'interruttore automatico con del nastro adesivo	È consigliabile prevedere una morsettiera di collegamento nei pressi dell'interruttore automatico per collegare i fili + e - dell'adattatore PTA. Il cablaggio del circuito 24 VDC può essere prolungato da questa morsettiera fino ai terminali di alimentazione 24 VDC. - Filo + : Colore marrone - Filo - : Colore bianco Rispettare le regole di cablaggio in vigore nei quadri di distribuzione: - Separare il percorso dei cavi di alimentazione da quello dei cavi con segnale di bassa ampiezza - Fissare il cavo lungo il percorso.

4.5 Collegamento dei contatti di uscita PTA e OAC

4.5.2 Collegamento del contatto OAC

Il contatto di uscita OAC è collegato utilizzando l'adattatore HTC130H disponibile in opzione e compatibile con gli interruttori automatici LSI, LSIG e Energy.

Cablaggio OAC

Ecco la procedura da seguire per collegare il contatto OAC:

	Azione	Nota/Illustrazione
1	Commutare l'interruttore automatico Energy collegato in posizione "OFF" o sganciata	Il connettore OAC si trova sul lato destro dell'interruttore automatico
2	Aprire il coperchio frontale dell'interruttore automatico	Il coperchio anteriore dell'interruttore automatico può essere aperto solo in posizione "OFF" o "sganciata"
3	Inserire la parte dell'adattatore HTC130H contrassegnata OAC nel connettore contrassegnato OAC all'interno dell'interruttore automatico sul lato destro	Rischio di danneggiare il connettore OAC. Rispettare le istruzioni di inserimento del connettore: la parte dell'adattatore contrassegnata OAC deve essere visibile dal fronte. Evitare di forzare il connettore durante l'inserimento
4	Fare passare il cavo dell'adattatore HTC130H lungo l'apposita canalina di destra dell'interruttore automatico. Se necessario, utilizzare il supporto laterale fornito con l'interruttore automatico per collegare il cavo alla parete laterale (vedi illustrazione qui sopra)	 È consigliabile prevedere una morsettiera di collegamento vicino all'interruttore automatico per collegare i fili + e - dell'adattatore HTC130H. Il cablaggio del circuito 24 V DC (max. 100 mA) può essere prolungato da questa morsettiera fino ai terminali di alimentazione 24 V DC. Filo + : Colore marrone Filo - : Colore bianco Rispettare le regole di cablaggio in vigore nei quadri di distribuzione: Separare il percorso dei cavi di alimentazione da quello dei cavi con segnale di bassa ampiezza Fissare il cavo lungo il percorso
5	Aprire il coperchio frontale dell'interruttore automatico per immobilizzare il supporto laterale come pure il passaggio laterale dei cavi	

4.6 Avvio e configurazione tramite il pannello display HTD210H

1 2 :hager ७ 心 (()) :hager 3 < ок \bigcirc HTP210H 5 6 7 4

Pannello display HTD210H

	Componente	Descrizione
1	Schermo	Tipo di LCD
2	LED di segnalazione	Allarme - Comunicazione - Ready
3	Jack RJ9	Sul retro del display
4	Tasto sensibile al contesto	Funzione dipendente dal menu visualizzato
5	Tasti sinistra/OK/destra	Tasti sinistro e destro per navigare a sinistra e a destra nei menu. Tasto OK: Conferma di un'azione
6	Tasto indietro	Tornare indietro o uscire dal menu. Tornare alla Modalità scorrimento premendo e tenendo premuto
7	Tasti su/giù	Tasti su e giù per navigare su e giù per i menu

4.6.1 Panoramica del display HTD210H

4.6 Avvio e configurazione tramite il pannello display HTD210H

4.6.1 Panoramica del display HTD210H

Menu pannello display HTD210H

Ci sono 5 menu principali e un menu a comparsa

	Menu	Descrizione	
1	\bigodot	Protezione: Questo menu permette all'utente di visualizzare i parametri di protezione e di modificarli se è autorizzato a farlo	
2	(1)	Misura: Questo menu permette di visualizzare i valori di misu- ra accessibili dal display	
3		Allarme: Questo menu permette di configurare gli allarmi, il contatto di uscita PTA e il contatto di uscita OAC	
4	(Y!)	Configurazione: Questo menu permette di impostare i para- metri di misura e i parametri di visualizzazione	
5	í	Informazioni: Questo menu permette di visualizzare lo stato dell'interruttore automatico, i dati di identificazione e gli storici degli allarmi	
6		Menu contestuale di sblocco	

Consultare il **manuale d'uso del pannello display HTD210H** per ulteriori informazioni sul pannello display.

4.6.2 Collegamento del pannello display HTD210H

AVVISO

Rischio di danneggiamento del pannello display HTD210H L'uso di un cavo RJ9 inadeguato può danneggiare il display. Usare solo adattatori CIP disponibili in opzione

Il pannello display HTD210H è collegato all'interruttore automatico Energy tramite l'adattatore CIP.

Il cavo adattatore CIP è composto da un connettore RJ9 da collegare al pannello display e da un connettore adatto per il collegamento al CIP.

Collegamento pannello display HTD210H

Ecco la procedura da seguire per collegare il pannello display HTD210H:

	Azione	Nota/Illustrazione
1	Commutare l'interruttore automatico Energy collegato in posizione "OFF" o sganciata	-
2	Aprire il coperchio frontale dell'interruttore automatico	Il coperchio anteriore dell'interruttore automatico può essere aperto solo in posizione "OFF" o "sganciata"
3	Inserire la parte contrassegnata CIP dell'adattatore CIP in uno dei connettori contrassegnati CIP all'interno dell'interruttore automatico sul lato sinistro	Rischio di danneggiare il connettore CIP. Rispettare le istruzioni di inserimento del connettore: la parte dell'adattatore contrassegnata CIP deve essere visibile dal fronte. Evitare di forzare il connettore durante l'inserimento
4	Far passare il cavo dell'adattatore CIP all'esterno dell'interruttore automatico finché non raggiunge il pannello display HTD210H	 Rispettare le regole di cablaggio in vigore nei quadri di distribuzione: Separare il percorso dei cavi di alimentazione da quello dei cavi con segnale di bassa ampiezza Fissare il cavo lungo il percorso
5	Aprire il coperchio frontale dell'interruttore automatico per immobilizzare il supporto laterale nonché la canalizzazione laterale.	

4.6 Avvio e configurazione tramite il pannello display HTD210H

4.6.3 Alimentazione del pannello display HTD210H

L'alimentazione a 24 V DC del pannello display HTD210H deve provenire da un'alimentazione esterna. L'alimentazione esterna 24 V DC è collegabile in due modi: - dal collegamento del modulo di comunicazione, se installato

- dal collegamento dell'adattatore HTC140H 24 V CIP.

Per collegare il modulo di comunicazione, vedere paragrafo 4.3.

Per collegare l'adattatore CIP-24 V, eseguire la seguente procedura.

	Azione	Nota/Illustrazione	
1	Commutare l'interruttore automatico Energy colle- gato in posizione "OFF" o sganciata	-	
2	Aprire il coperchio frontale dell'interruttore automatico	Il coperchio anteriore dell'interruttore automatico può essere aperto solo in posizione "OFF" o "sganciata"	
3	Inserire la parte contrassegnata CIP dell'adattatore HTC140H nel connettore CIP libero all'interno dell'interruttore automatico sul lato sinistro	Rischio di danneggiare il connettore CIP. Rispettare le istruzioni di inserimento del connettore: la parte dell'adattatore contrassegnata CIP deve essere visibile dal fronte. Evitare di forzare il connettore durante l'inserimento	
4	Far passare il cavo dell'adattatore HTC140H con il cavo dell'adattatore CIP lungo l'apposita canalina sinistra dell'interruttore automatico. Se necessario, utilizzare il supporto laterale fornito con l'interruttore automatico per collegare il cavo alla parete laterale	 È consigliabile prevedere una morsettiera collegamento a 24 V nei pressi dell'interruttore automatico per collegare i fili + e - dell'adattatore HTC140H. Il cablaggio del circuito 24 V DC può essere prolungato da questa morsettiera fino ai terminali di alimentazione 24 V DC. Filo + : Colore marrone Filo - : Colore bianco Rispettare le regole di cablaggio in vigore nei quadri di distribuzione: Separare il percorso dei cavi di alimentazione da quello dei cavi con segnale di bassa ampiezza Fissare il cavo lungo il percorso 	
5	Aprire il coperchio frontale dell'interruttore automatico per immobilizzare il supporto laterale nonché la canalizzazione laterale	-	

4.6.4 Primo avvio del pannello display HTD210H

Al primo utilizzo, il display chiederà di scegliere la lingua di navigazione. L'inglese è la lingua predefinita che propone.

Per cambiare lingua:

	Azione	Tasto	Schermo	
1	Selezionare un'altra lingua	(ок)	Language: ◀ Français ►	
2	 Confermare la selezione Lo schermo viene visualizzato nella lingua scelta. Il display passa alla Modalità scorrimento 	< ok >	U U12: U23: 116v 133v U U31: 118v V I	I

L'accesso per modificare la configurazione dell'interruttore automatico è protetto da una password.

Nota

Il pannello display HTD210H viene fornito con la password predefinita: 3333. Si raccomanda di cambiare la password al primo avvio.

4.6 Avvio e configurazione tramite il pannello display HTD210H

4.6.4 Primo avvio del pannello display HTD210H

Ecco la procedura da seguire per cambiare la password:

	Azione	Tasto	Schermo
1	Aprire il menu Principale - La presenza di un lucchetto significa che lo schermo è bloccato	oppure	Measure
2	Aprire il menu per inserire la password - La password deve essere di 4 cifre. - Per impostazione predefinita: 3333	Ó	Enter password:
3	Aumentare/diminuire il valore		Enter password:
4	Selezionare le cifre successive e posizionare i valori	< ок >	Enter password: 1 [2] 0 0
5	Confermare l'immissione. Risultato - Il display è sbloccato - Il simbolo della serratura è aperto - I sottomenu non sono più bloccati	< ok >	Enter password: 1 2 3 2 Protection Protection I: 125A tr: 5.0s Isd: 10.0xlr tsd: 100ms 12t short: Off I: 11.0xln

	Azione	Tasto	Schermo
6	Se la password non è corretta, deve essere inserita di nuovo (Ripetere dal punto 3)	-	Enter password: 1 2 3 El Wrong Password
7	Aprire il menu Configurazione.	< ok >	Configuration
8	Selezionare il sottomenu "Cambiare password"	~	Configuration Y! Change password: ****
9	Confermare la selezione e inserire la nuova password	< ok >	Configuration Y ! Chew password: D 0 0 0 Chew password:
10	Aumentare/diminuire il valore		Configuration Y! Chew password: Chew password: 2 0 0 0
11	Selezionare le cifre successive e posizionare i valori	< ok >	Configuration Y ! Chew password: 2 3 2 3 Chew password:
12	Confermare l'immissione	< ok >	Configuration

Consultare il **manuale d'uso del pannello display HTD210H** per ulteriori informazioni sul pannello display.

4.6 Avvio e configurazione tramite il pannello display HTD210H

4.6.5 Raccomandazioni di configurazione tramite HTD210H

Consultare preventivamente il **manuale d'uso del pannello display HTD210H** per leggere i consigli e le istruzioni per l'uso del prodotto.

Impostazione di protezione dell'interruttore automatico Energy Prima di utilizzare il pannello display HTD210H per configurare il livello di protezione dell'interruttore automatico Energy, è necessario impostare il setpoint Ir max sull'interruttore automatico Energy. Fare riferimento al paragrafo 4.2.3.

Tutti i parametri di impostazione della protezione possono essere modificati dal menu **Protezione.**

Menu protezione del pannello display HTD210H

Nota

Alcuni parametri di protezione possono essere disponibili o meno a seconda del modello di interruttore automatico Energy. In particolare, il sottomenu ZSI è disponibile solo su un interruttore automatico Energy P250 e superiore.

Impostazione dei parametri di misura dell'interruttore automatico Energy Le impostazioni dei parametri di misura sono accessibili nel menu di Configurazione.

Menu Configurazione del pannello display HTD210H

Gestione degli allarmi e del contatto di uscita dell'interruttore automatico Energy

Le impostazioni degli allarmi e dei contatti di uscita PTA e OAC sono accessibili nel menu **Allarme.**

Menu allarme del pannello display HTD210H

4.6 Avvio e configurazione tramite il pannello display HTD210H

4.6.6 Attivazione degli allarmi di HTD210H

Priorità di allarme

Il display gestisce gli avvisi di allarme secondo il loro livello di priorità

Priorità Azioni

	Allarme memorizzato come evento	Memorizzato nell'elenco degli allarmi attivi (*)	LED di allarme lampeggiante	Notifica di allarme (**)
Bassa	х			
Media	х	х	х	
Alta	х	х	х	x

(*) Memorizzato nell'elenco degli allarmi attivi:

Solo in Modalità scorrimento, un'icona di allarme viene visualizzata sopra il tasto sensibile al contesto a mo' di icona contestuale. Se non viene visualizzata alcuna finestra di notifica dell'allarme, è possibile visualizzarla premendo il tasto sensibile al contesto.

(**) Notifica di allarme:

La finestra di notifica dell'allarme viene visualizzata immediatamente (indipendentemente dalla modalità).

Informazioni

Quando si verifica un allarme con "bassa" priorità, non viene notificato dal display.

Avvisi di allarme

Gli allarmi ad alta priorità sono segnalati in una finestra di notifica degli allarmi.

- (2) Notifica di allarme
- (3) Icona "Elenco degli allarmi attivi"

Descrizione di una notifica di allarme

Visualizzazione	Descrizione	
	Allarme di sgancio	
	Allarme personalizzato	
OAC	Appare quando l'allarme attivo è stato assegnato al contatto di uscita OAC. Questo indica che il contatto OAC è stato attivato. Il contatto OAC può essere assegnato a uno dei 12 allarmi personalizzati, il preallarme PTA o un allarme di sistema (errore interno dello sganciatore, allarme di temperatura dello sganciatore, rottura del polo neutro)	

Esempio di una notifica di allarme

Visualizzazione	Descrizione
	Preallarme di sovraccarico PTA Appare quando la corrente di carico dell'interruttore automatico ha raggiunto la zona di avviso di pre-sgancio, definita dall'impostazione PTA
(V) Trip test 08/06/2018 - 10:44 (U)	Prova di sgancio manuale Un test di sgancio manuale ha avuto luogo il 06/03/2018 alle 14:35, ed è stato eseguito tramite lo strumento di configurazione HTP610H
(v) DP ((▲)) △1. V2 > 240V 06/03/2018 - 14:18 II	Allarme personalizzato n. 1 Ha avuto luogo il 06/03/2018 alle 14:18, tensione sulla fase 2 V2 > 240 V

Cancellazione di una notifica di allarme

Le notifiche di allarme ad alta priorità devono essere cancellate. Per cancellare gli allarmi ad alta priorità:

	Azione	Tasto
1	Cancellare l'allarmeLa notifica scompare	< ok >

Commento

Una volta eliminato, l'allarme può essere ancora attivo se la causa non viene eliminata. In questo caso, la finestra di allarme può essere visibile nell'elenco degli allarmi attivi.

4.7 Messa in servizio tramite lo strumento di configurazione HTP610H

Elenco degli allarmi attivi

Tutte le descrizioni degli allarmi attivi con un livello di priorità medio o alto sono accessibili nell'elenco degli allarmi attivi tramite il tasto sensibile al contesto.

Le finestre di notifica degli allarmi attivi con un alto livello di priorità possono essere visualizzate dopo che sono stati cancellati usando il tasto sensibile al contesto quando è visualizzata l'icona Allarme.

Nel caso di allarmi attivi con un livello di priorità medio, è possibile visualizzare questi allarmi di livello medio sotto forma di finestre di notifica anche tramite il tasto sensibile al contesto quando viene visualizzata l'icona Allarme.

	Azione	Tasto	Schermo
1	Aprire l'elenco degli allarmi attivi		U ((▲)) <u>A</u> 2. I2 > 88A ((▲)) <u>16/04/2018 - 14:05</u> ↓
2	In caso di più allarmi attivi: visualizzare la notifica precedente o successiva	< ck >	(lst.) U ((▲)) ▲1. l1 > 99A ((▲)) 16/04/2018 - 14:05 ↓ ↓ ↓ U

4.7.1 Preparazione dello strumento HTP610H

AVVISO

Le seguenti istruzioni e spiegazioni sono anche descritte in modo più completo nel manuale utente dello strumento di configurazione HTP610H. Consultare preventivamente il manuale utente dello strumento di configurazione HTP610H per leggere i consigli e le istruzioni per l'uso.

Lo strumento di configurazione HTP610H funziona autonomamente grazie a una batteria ricaricabile integrata. Assicurarsi che lo strumento HTP610H sia sufficientemente carico prima dell'uso.

Collegamento del caricabatterie alla rete elettrica

Unità di configurazione collegata alla rete elettrica

Collegamento all'interruttore automatico h3+

L'adattatore MIP e il cavo di collegamento forniti con lo strumento consentono di collegare lo strumento di configurazione all'interruttore automatico h3+.

Collegamento unità di configurazione

4.7 Messa in servizio tramite lo strumento di configurazione HTP610H

4.7.1 Preparazione dello strumento HTP610H

Dopo l'avvio, l'unità di configurazione alimenta lo sganciatore dell'interruttore automatico h3+ e consente quindi di utilizzare il display incorporato dello sganciatore Energy.

Connessione al server di configurazione via Wi-Fi

Unità d configurazione e Wi-Fi

AVVISO

Rischio di interruzione a seguito di perdita involontaria della connessione Wi-Fi. L'utilizzo dello strumento di configurazione HTP610H richiede una connessione Wi-Fi stabile per tutta la durata di utilizzo del software di configurazione. Disattivare eventuali connessioni Wi-Fi automatiche.

Questa è la procedura da seguire per accedere al server di configurazione via Wi-Fi da un tablet multimediale:

	Azione	Nota/Illustrazione
1	 Avviare il server di configurazione: Premere il pulsante di accensione Attendere che il LED di alimentazione rimanga verde 	
2	Disattivare il roaming dati (cellulare) sul tablet, quindi attivare il Wi-Fi	
3	Selezionare il nome SSID "HTP610H_XXXX" dello strumento di configurazione nell'elenco delle reti disponibili	Il nome SSID è riportato sull'etichetta sul retro dell'unità di configurazione.
4	Inserire la password Wi-Fi dello strumento HTP610H: MCCB_Configurator	Il LED "Connection" si accende di colore arancione sull'unità di configurazione

Apertura della sessione Gestione interruttore automatico

Il software di configurazione è accessibile tramite due diverse sessioni di login:

- Generare le password per HTD210 H e HTC310H/320H
- Visualizzare le informazioni relative alla versione e alle licenze del software.

Nota L'accesso è limitato ai menu di test e di visualizzazione dello stato degli sganciatori LSnl, LSI e LSIG

	Azione	Nota/Illustrazione		
1	Aprire il browser web e inserire il seguente indirizzo URL:	http://www.htp610h/index.html		
2	Inserisci i tuoi dati di accesso al configuratore	Login to Configu	aration tool Server	
	Per impostazione predefinita, è disponibile il seguente login:	Login:	Config	
	Login: Config	Password:	•••••	
	Password: config		1	
	Clicca su Login per			
	comermare		Login	
3	Clicca su Gestione Interruttore automatico o MCCB*			

Per aprire una sessione Gestione interruttore automatico, procedere come segue:

(*) Se non è possibile fare clic sulla Gestione interruttore automatico, verificare che l'interruttore automatico sia correttamente collegato allo strumento di configurazione. Se il problema continua, fare riferimento al manuale utente dello strumento configurazione HTP610H.

Nota

È possibile collegarsi al server di configurazione tramite un cavo Ethernet da un computer. Per ulteriori informazioni, fare riferimento al manuale utente dello strumento configurazione HTP610H.

4.7 Messa in servizio tramite lo strumento di configurazione HTP610H

4.7.2 Raccomandazioni di configurazione tramite HTP610H

Impostazione della protezione dell'interruttore automatico Energy

Prima di tentare di impostare il livello di protezione dell'interruttore automatico Energy con lo strumento di configurazione, è necessario impostare il setpoint Ir max sullo sganciatore Energy. Fare riferimento al paragrafo 4.2.3.

Dopo aver aperto una sessione Gestione interruttore automatico, tutti i parametri di impostazione della protezione possono essere modificati dal menu **Impostazioni di protezione.**

Nota

Alcuni parametri di protezione possono essere disponibili o meno a seconda del modello di interruttore automatico Energy. In particolare, il sotto-menu **ZSI** è disponibile solo su un interruttore automatico Energy P250 e superiore.

9	:ha	iger		 💄 Configurator Na 👻
(4) Trip Unit Status	Protection			
Measurements	> Phase			
⊠ _≕ Testing	> Long time delay			
Configuration	, ir:	77 —	• + •	
Communication	tr:	5 —	• + 8	
Measurements	Short time delay			
Protection	isd enabled:	0		
Custom Alarms	lsd:	10 —	· + 0	
Trip & Contacts	l ² t _{SD}	✓ 0		
Reset & Erase	ZSI _{SD;}	0		
Diagnostic	> Instantaneous			
(i) Identification	fi:	14 —	+ 0	
	· · · · ·			
				🗙 Cancel 🖺 Save

Impostazioni di protezione nello strumento HTP610H

Impostazione dei parametri di misura dell'interruttore automatico Energy tramite lo strumento HTP610H I parametri di misura dell'interruttore automatico Energy possono essere modificati dal sottomenu Impostazioni di misura.

ි ර	:ha	ger		⊘ ▲ Configurator Na
(*) Trip Unit Status	Measurements			
Measurements	Phase sequence;	1,2,3	2	-
⊠ _₽ Testing	Topology:	3f4W		
*	Power sign convention:	+ 3	1	
Configuration	Calculation convention:	Vector		
Communication	On demand duration(min):	27	- 0	
Monguromonte	On demand mode:	Bus	-	
	PF Sign Convention;	IEC	-	
Protection	_			
Custom Alarms				
Trip & Contacts				
Reset & Erase				
Diagnostic Diagnostic				
(1) Identification				
				🗙 Cancel 🖺 Save

Impostazioni di misura nello strumento HTP610H

Gestione degli allarmi e del contatto di uscita dell'interruttore automatico Energy I parametri di misura dell'interruttore automatico Energy possono essere modificati. Le impostazioni degli allarmi e i parametri di misura dei contatti di uscita PTA e OAC sono accessibili dai sottomenu **Parametri degli allarmi di sgancio e dei contatti di uscita**.

()		:hager		• • • •	Configurator I	Na
(+) Trip Unit Status	Custom Ala	irms				C
Measurements	Alarm n	Pick-up value / delay	Drop-out value / delay	Alarm priority	Sta	
	1	Quadrant 1 > 1 / 1s	Quadrant 1 < 1 / 1s	High	OFF	1×
⊠ _F Testing	> 2	l1 > 70A / 1s	11 < 60A / 1s	Medium	OFF	1×
	~ 3	Frequency > 54Hz / 1s	Frequency < 51Hz / 1s	Medium	OFF	# x
e comgaration	4	l2 > 170A / 8s	12 < 139A / 3s	Low	OFF	/×
Communication	5	l2 > 994A / 5s	12 < 20A / 1s	None	OFF	1×
Measurements	6					+
	7					+
Protection	8					+
Custom Alarms	9					+
	10					+
inp & Contacts	11					+
Reset & Erase	12					+
Diagnostic	>					
Identification						

Impostazioni degli allarmi personalizzati nello strumento HTP610H

Consultare preventivamente il **manuale utente dello strumento di configurazione HTP610H** per leggere le spiegazioni e le istruzioni di gestione degli allarmi.

4.7 Messa in servizio tramite lo strumento di configurazione HTP610H

4.7.3 Test della curva di intervento tramite HTP610H

A PERICOLO

Pericolo di gravi lesioni o pericolo di morte.

Assicurarsi che l'arrivo dell'alimentazione a monte dell'interruttore automatico sia sezionato e isolato prima di eseguire un test della curva di intervento.

Lo strumento di configurazione HTP610H permette di testare la curva di intervento degli sganciatori + LSnI, LSI, LSIG e Energy.

()			:hager				Configurator Na.	w) **
(4) Trip Unit Status		Trips						
Measurements	>	Test settings	Tripping graph	Measurement ra	aw data			
⊠ _⊯ Testing	~	Settings			Tripping me	nasure		
Trips		Phase:	Phase					
Contacts			Neutral					
ᢟ Configuration	>	Tune:	Ground					
Diagnostic	>	type.	O Saril-automatic					
(1) Identification		PTA & LTD	O Manual					
		intensity:		- +	Start test	Stop tes	t 💼 Erase list 🖒	• Třip

Il test di intervento viene eseguito dal menu Test.

Menu di test dello strumento HTP610H

Scheda parametri test	Possibile impostazione
Fase (polo di sgancio)	Fase - Neutro - Terra
Тіро	Automatico - Semiautomatico - Manuale
PTA & Lungo ritardo	Attivato - Disattivato
Intensità	Scelta dell'intensità della corrente di prova per un test di tipo manuale

Tipo di test	Risultato
Automatico	Vengono testati tutti i punti della curva di intervento
Semiautomatico	Tutti i punti della curva di intervento sono testati in modalità passo-passo
Manuale	Lo strumento di configurazione testa l'intensità fissata su tutti i parametri di soglia scelti quando si regola la protezione

4.7.4 Test di contatto PTA e OAC tramite HTP610H

Lo strumento di configurazione HTP610H permette di testare il contatto di uscita PTA sugli interruttori automatici LSI, LSIG e Energy. Permette altresì di testare il contatto di uscita OAC sull'interruttore automatico Energy.

Il test consiste nel forzare la chiusura del contatto PTA o del contatto OAC, permettendo così di verificare lo stato del cablaggio del circuito sul contatto di uscita PTA o OAC.

Il test dei contatti viene eseguito dal sottomenu Attivazione dei contatti di ingresso/uscita

(4) Trip Unit Status		Contacts		
③ Measurements	>	OAC/PTA port		
⊠ _≣ Testing	~	OAC port	ACTIVATE	
Trips		PTA port	ACTIVATE	
Contacts		ZSI port		
🚔 Configuration	>	ZSI2 Short delay ZSI2 Ground	ACTIVATE	
Diagnostic	>		NUTIVIL	
(i) Identification				

Menu Attivazione dei contatti dello strumento HTP610H

4.8 Esercizio

4.8.1 Visualizzazione di informazioni sul display incorporato e sporgente

Informazioni disponibili sul display incorporato

Escludendo i valori di impostazione e i valori misurati, il display incorporato fornisce le seguenti informazioni dal menu Informazioni:

- informazioni sull'ultimo evento di sgancio dello sganciatore
- AX: numero dei cicli di manovra apertura/chiusura
- AL: numero di interventi legati a un guasto elettromeccanico

Nota

Le informazioni sul numero di cicli di manovra o sul numero di interventi possono essere utilizzate solo se l'accessorio ausiliario AX/AL Energy è stato installato nell'interruttore automatico Energy.

	Notifica	Contatto di uscita OAC attivato		
Allarme di uscita OAC	(((▲))) 0ae			
Allarme di sgancio	Notifica LTD 299A PH.1	 Indica il tipo di intervento e la sua causa: LTD: Temporizzazione Lungo ritardo STD: Temporizzazione Breve ritardo INST: Istantaneo GROUND: Protezione differenziale TEST: Modalità di test tramite connettore MIP 		
Allarme temperatura sganciatore	Notifica	LED rosso permanente o notifica su Energy: Temperatura interna dello sganciatore > 105 °C		
Allarme di sovraccarico	> lr	 rosso lampeggiante I ≥ 105% lr rosso permanente: I ≥ 112% lr 		
Preallarme di sovraccarico PTA	РТА	 LED 90% Ir o PTA arancione lampeggiante: soglia del 90% o soglia PTA raggiunta arancione permanente: Contatto PTA attivato 		
Stato sganciatore	Ready	 verde permanente: Lo sganciatore è operativo arancione lampeggiante: Guasto interno sganciatore off: Sganciatore non alimentato correttamente 		

Nota

I pop-up devono essere cancellati per accedere ai menu del display

Informazioni disponibili sul display sporgente HTD210H

Le misure selezionate come preferite possono essere visualizzate costantemente grazie alla Modalità scorrimento.

Nota

I preferiti sul pannello display sporgente sono selezionati e configurati indipendentemente dal display incorporato dell'interruttore automatico h3+ Energy.

:hager	-	● ((▲))	● ○ ↓ ⁽⁾
	:haq	er	- 1
- 1			
	(< ок	>	\bigcirc
~	¢		HTD210H

Il pannello display HTD210H indica le seguenti informazioni relative ai LED:

Allarme	Rosso lampeggiante se viene attivato un allarme di livello di priorità medio o alto
Comunicazione	
	Giallo lampeggiante per indicare il traffico di dati tra il display e lo sganciatore Energy
Ready	
<u></u> උ	Verde permanente se il display si accende e funziona

Inoltre, indica il verificarsi di allarmi ad alta priorità in forma di pop-up.

Nota

I pop-up devono essere cancellati per accedere ai menu del display quando gli allarmi restano attivati.

4.8 Esercizio

4.8.1 Visualizzazione di informazioni sul display incorporato e sporgente

Il display sporgente permette di consultare le seguenti informazioni durante il suo funzionamento:

- Impostazioni di protezione e altre impostazioni dello sganciatore
- Valori misurati
- Impostazioni d'allarme
- Storici degli allarmi
- Informazioni di identificazione relative allo sganciatore e al display
- AX: Stato del contatto e numero di cicli di apertura/chiusura
- AL: Stato del contatto e numero di interventi elettromeccanici dovuti a guasti
- Stato dei contatti di PTA e OAC
- Impostazioni del display

Nota

Le informazioni di contatto AX e AL vengono sempre inviate al display, ma saranno rilevanti solo se l'accessorio ausiliario AX/AL Energy è stato installato nell'interruttore automatico Energy.

4.8.2 Visualizzazione di dati sullo strumento di configurazione HTP610H

Lo strumento di configurazione permette all'utente di visualizzare tutti i dati necessari per il funzionamento, la misura e la configurazione dell'interruttore automatico Energy.

I menu dell'interfaccia di configurazione forniscono i dati essenziali relativi all'interruttore automatico collegato allo strumento.

t) ሀ		:ha	ger	0	÷	
(4).	Trip Unit Status		Trip Unit Status				
Ð	Measurements	>	LED status				
⊠ _₽	Testing	>	> Ir:	OFF			
\$P	Configuration	>	PTA:	OFF			
	Diagnostic	>	Ready:	ON Green			
(i)	Identification		OAC/PTA port				
			OAC port:	OFF			
			PTA port:	OFF			
			Trip unit temperature				
			Current TU temperature:	26 °C			
			Alarm status:	OFF			
			Alarm threshold:	105 °C			
			AX/AL Energy				

Visualizzazione dello stato dello sganciatore HTP610H
Lo strumento di configurazione dell'HTP610H permette di visualizzare ad esempio le seguenti informazioni:

- Temperatura sganciatore
- Impostazioni di protezione e altre impostazioni dello sganciatore
- Valori istantanei e misurati (max, min, medio...)
- Test in corso
- Valori testati
- Impostazioni d'allarme
- Storici degli allarmi
- Storico degli eventi (cambiamento impostazioni di protezione)
- Informazioni di identificazione dello sganciatore
- AX: Stato del contatto e numero di cicli di apertura/chiusura
- AL: Stato del contatto e numero di interventi elettromeccanici dovuti a guasti
- ZSI: Stato del/i contatto(i)
- Stato sganciatore
- Impostazioni del display

Per ulteriori informazioni sull'uso dello strumento di configurazione, fare riferimento al **Manuale utente HTP610H strumento di configurazione h3+.**

4.8.3 Visualizzazione dei dati di esercizio su agardio.manager

Vedere il manuale utente di agardio.manager

5 BUS di comunicazione Modbus RTU

5.1 Funzionalità Modbus dell'interruttore automatico Energy

L'interruttore automatico Energy offre la possibilità di collegarsi a un bus di comunicazione Modbus RTU dal modulo di comunicazione opzionale HTC310H o HTC320H.

Il protocollo utilizzato è il protocollo Modbus RTU. Il modulo di comunicazione HTC310H o HTC320H ha il vantaggio di regolare automaticamente il numero di bit di stop quando si regola la parità (vedere paragrafo 5.4 - Configurazione del Modbus del modulo di comunicazione - Modbus pagina 112).

Il modulo di comunicazione si collega a un solo interruttore automatico Energy alla volta. Questo modulo permette quindi all'interruttore automatico di funzionare come un dispositivo Modbus slave.

La maggior parte delle funzioni Modbus e dei codici di eccezione standard sono gestiti dall'interruttore automatico Energy.

Nota

Per ulteriori informazioni sulle funzioni Modbus e sui codici di eccezione, contattateci.

La tabella dei registri Modbus è disponibile sul sito web di Hager Bocchiotti.

5.2 Protezione da scrittura e gestione delle password Modbus

Rischio di sgancio non voluto e difettoso.

Solo il personale qualificato può impostare i livelli di protezione a distanza. Il mancato rispetto di queste istruzioni può causare morte, lesioni gravi o danni all'apparecchiatura.

Le modifiche remote apportate ai registri Modbus possono essere pericolose per il personale vicino all'interruttore o possono causare danni all'apparecchiatura se i parametri di protezione vengono modificati.

Di conseguenza, i comandi di scrittura dei dati a distanza hanno due livelli di protezione:

- A livello dell'interruttore automatico Energy (vedi paragrafo 4.2.4 Informazioni sull'impostazione dell'autorizzazione alla scrittura dei dati pagina 76
- A livello di gestione delle password Modbus

Gestione delle password

I comandi di accesso in scrittura Modbus sono protetti da 4 livelli di password:

- Livello 0: Accesso ai dati relativi alla data, all'ora e ai campi personalizzati
- Livello 1: Accesso ai dati di configurazione della misura
- Livello 2: Accesso a dati potenzialmente pericolosi per l'installazione
- Livello 3: Accesso al reset delle password di livello 1 e 2

Solo i livelli da 1 a 3 sono protetti da password:

- Livello 1: Password predefinita "Level1"
- Livello 2: Password predefinita "Level2"
- Livello 3: Password creata con lo strumento di configurazione HTP610H

Nota

Per ulteriori informazioni sui comandi di scrittura sicura, contattateci.

5.3 Connessione del modulo di comunicazione alla rete Modbus

AVVISO

Rischio di perdita di dati Modbus

L'uso di cavi di collegamento diversi da quelli raccomandati può causare problemi di funzionamento della connessione Modbus e di conseguenza la perdita di dati.

Il modulo di comunicazione è collegato alla catena di cablaggio Modbus utilizzando cavi specifici disponibili in opzione.

Questi cavi sono dotati di connettori RJ45 compatibili con le connessioni del modulo di comunicazione e del server agardio.manager.

Connessione a agardio.manager

Cavi	Lunghezza	Riferimento
	0,2 m	HTG480H
Cavo RJ45 – RJ45	1 m	HTG481H
	2 m	HTG482H
	5 m	HTG484H
Cavo RJ45 - RJ45 con filo di terra	1 m	HTG471H
	2 m	HTG472H
	5 m	HTG474H
Cavo RJ45 - filo nudo e filo di terra	3 m	HTG465H
Cavo nudo Modbus	25 m	HTG485H
Cavo CIP	0,50 m	HTC330H
	1.50 m	HTC340H
	3 m	HTC350H
	5 m	HTC360H
	10 m	НТС370Н

Il modulo di comunicazione è dotato di due prese RJ45 nella parte bassa del prodotto per facilitare l'integrazione nella catena Modbus.

Le prese MODBUS 1 e MODBUS 2 possono essere utilizzate in una direzione di ingresso/uscita come nel caso di una direzione di ingresso/uscita della catena di collegamento Modbus.

Morsetti di collegamento HTC320H

5.4 Configurazione del modulo di comunicazione

I parametri del modulo di comunicazione Modbus possono essere regolati sul fronte

- a mezzo commutatori rotanti e selettore:
- Indirizzo Modbus
- Parità
- Velocità di trasmissione
- Resistenza 120 Ω

Nota

Il modulo di comunicazione Modbus ha una resistenza di 120 Ω per integrare un'impedenza di terminazione nella catena Modbus. Questa resistenza può essere attivata/disattivata dal selettore 120 Ω .

Impostazione indirizzo Modbus	Impostazione predefinita
da 1 a 99 utilizzando i selettori di regolazione x1 e x10	1
Impostazione della parità	Impostazione predefinita
None – Odd - Even	Even

Nota

L'impostazione della parità include la gestione automatica della regolazione del numero di bit di stop. None: nessuna parità, 2 bit di stop Odd : dispari, 1 bit di stop Even : pari, 1 bit di stop

Velocità di trasmissione	Impostazione predefinita
4800 – 9600 – 19200 - 38400	19200
Impostazione 120 Ω	Impostazione predefinita
ON - OFF	OFF

5.5 Comunicazione con agardio.manager

Vedere il **manuale utente di agardio.manager** e la **guida all'installazione di HTG410H/HTG411H**

6 Consigli per risoluzione dei problemi

6.1 Risoluzione dei problemi

In caso di problemi durante l'utilizzo di un sistema h3+, questo capitolo fornisce consigli su come risolverli.

Malfunzionamento	Consigli	Se il guasto continua	
LED Ready spento	 Verificare che la corrente consumata dall'impianto sia superiore alla soglia richiesta (vedere la tabella al paragrafo 2.1.4) Se si usa un'alimentazione esterna, controllare se l'alimentazione esterna a 24 V DC è alimentata e collegata a uno dei connettori CIP dell'interruttore 	Contattare il supporto tecnico Hager Bocchiotti se il guasto persiste	
ll display incorporato non si accende	 Verificare che la corrente consumata dall'impianto sia superiore alla soglia richiesta (vedere la tabella al paragrafo 2.1.4) Se si usa un'alimentazione esterna, controllare se l'alimentazione esterna a 24 V DC è alimentata e collegata a uno dei connettori CIP dell'interruttore automatico 		
II LED Ready lampeggia in arancione	 Controllare il posizionamento dei selettori di regolazione Sullo sganciatore Energy 3P, controllare che la protezione del neutro sia disattivata 	MCCB deve essere sostituito quando non garantisce più la protezione dell'impianto elettrico	
Messaggio "Errore di comunicazione" sul display incorporato	 Contattate il vostro supporto tecnico Hager Bocchiotti 	-	
Display sporgente off	 Controllare se l'alimentazione esterna a 24 V DC è alimentata e collegata a uno dei connettori CIP dell'interruttore automatico Controllare il collegamento dell'adattatore CIP tra il display e l'interruttore automatico Sostituire se necessario 	Contattare il supporto tecnico Hager Bocchiotti se il guasto persiste	
Messaggio "Errore di comunicazione" sul display sporgente	 Controllare il collegamento dell'adattatore CIP tra il display e il collegamento Ricollegare il display sporgente 		

Malfunzionamento	Consigli	Se il guasto continua	
LED Power del modulo di comunicazione spento	 Quando si utilizza un'alimentazione esterna collegata allo sganciatore, controllare i collegamenti tra il modulo e lo sganciatore Quando si usa un'alimentazione esterna collegata al modulo, controllare la presenza dei 24 V DC all'uscita dell'alimentazione e controllare i collegamenti 	_	
LED Power del modulo di comunicazione lampeggiante con verde	 Attendere qualche secondo Controllare i collegamenti tra il modulo e l'interruttore automatico 	_	
LED Power del modulo di comunicazione rosso fisso	- Contattare il supporto tecnico Hager Bocchiotti	Contattare il supporto tecnico Hager Bocchiotti se il guasto	
LED Modbus del modulo di comunicazione rosso fisso	 Controllare il posizionamento dei selettori di regolazione 		
LED Modbus del modulo di comunicazione spento	- Controllare il collegamento dei cavi Modbus	persiste	

:hager (B) восснютт

Hager Bocchiotti S.p.A. Via dei Valtorta, 45 20127 Milano

Telefono +39 02 70150511 info@hager-bocchiotti.com hager-bocchiotti.com

Per te, con te.

